Surgical site infections: prevention and treatment

NICE guideline
Published: 11 April 2019
www.nice.org.uk/guidance/ng125
Your responsibility

The recommendations in this guideline represent the view of NICE, arrived at after careful consideration of the evidence available. When exercising their judgement, professionals and practitioners are expected to take this guideline fully into account, alongside the individual needs, preferences and values of their patients or the people using their service. It is not mandatory to apply the recommendations, and the guideline does not override the responsibility to make decisions appropriate to the circumstances of the individual, in consultation with them and their families and carers or guardian.

Local commissioners and providers of healthcare have a responsibility to enable the guideline to be applied when individual professionals and people using services wish to use it. They should do so in the context of local and national priorities for funding and developing services, and in light of their duties to have due regard to the need to eliminate unlawful discrimination, to advance equality of opportunity and to reduce health inequalities. Nothing in this guideline should be interpreted in a way that would be inconsistent with complying with those duties.

Commissioners and providers have a responsibility to promote an environmentally sustainable health and care system and should assess and reduce the environmental impact of implementing NICE recommendations wherever possible.
Contents

Overview ..4
Who is it for? ..4

Recommendations ..5
 1.1 Information for patients and carers ..5
 1.2 Preoperative phase ..5
 1.3 Intraoperative phase ..8
 1.4 Postoperative phase ...12

Terms used in this guideline ..14

Recommendations for research ..16
 Key recommendations for research ..16
 Other recommendations for research ..17

Rationale and impact ...18
 Nasal decolonisation ...18
 Antiseptic skin preparation ..20
 Antiseptics and antibiotics before wound closure ..21
 Closure methods ...23

Context ...25

Finding more information and resources ...26

Update information ..27
This guideline replaces CG74.

This guideline is the basis of QS49.

Overview

This guideline covers preventing and treating surgical site infections in adults, young people and children who are having a surgical procedure involving a cut through the skin. It focuses on methods used before, during and after surgery to minimise the risk of infection.

Who is it for?

- Healthcare professionals
- Commissioners and providers
- People having surgery, their families and carers
Recommendations

People have the right to be involved in discussions and make informed decisions about their care, as described in your care.

Making decisions using NICE guidelines explains how we use words to show the strength (or certainty) of our recommendations, and has information about prescribing medicines (including off-label use), professional guidelines, standards and laws (including on consent and mental capacity), and safeguarding.

1.1 Information for patients and carers

1.1.1 Offer patients and carers clear, consistent information and advice throughout all stages of their care. This should include the risks of surgical site infections, what is being done to reduce them and how they are managed. For more guidance on providing information to adults and discussing their preferences with them, see the NICE guideline on patient experience in adult NHS services. [2008]

1.1.2 Offer patients and carers information and advice on how to care for their wound after discharge. [2008]

1.1.3 Offer patients and carers information and advice about how to recognise a surgical site infection and who to contact if they are concerned. Use an integrated care pathway for healthcare-associated infections to help communicate this information to both patients and all those involved in their care after discharge. [2008]

1.1.4 Always inform patients after their operation if they have been given antibiotics. [2008]

1.2 Preoperative phase

Preoperative showering

1.2.1 Advise patients to shower or have a bath (or help patients to shower, bath or bed bath) using soap, either the day before, or on the day of, surgery. [2008]
Nasal decolonisation

1.2.2 Consider nasal mupirocin in combination with a chlorhexidine body wash before procedures in which *Staphylococcus aureus* is a likely cause of a surgical site infection. This should be locally determined and take into account:

- the type of procedure
- individual patient risk factors
- the increased risk of side effects in preterm infants (see recommendation 1.3.8)
- the potential impact of infection. [2019]

1.2.3 Maintain surveillance on antimicrobial resistance associated with the use of mupirocin. For information on antimicrobial stewardship programmes, see the NICE guideline on antimicrobial stewardship: systems and processes for effective antimicrobial medicine use. [2019]

To find out why the committee made the 2019 recommendations on nasal decolonisation and how they might affect practice, see rationale and impact.

Hair removal

1.2.4 Do not use hair removal routinely to reduce the risk of surgical site infection. [2008]

1.2.5 If hair has to be removed, use electric clippers with a single-use head on the day of surgery. Do not use razors for hair removal, because they increase the risk of surgical site infection. [2008]

Patient theatre wear

1.2.6 Give patients specific theatre wear that is appropriate for the procedure and clinical setting, and that provides easy access to the operative site and areas for placing devices, such as intravenous cannulas. Take into account the patient's comfort and dignity. [2008]
Staff theatre wear

1.2.7 All staff should wear specific non-sterile theatre wear in all areas where operations are undertaken. [2008]

Staff leaving the operating area

1.2.8 Staff wearing non-sterile theatre wear should keep their movements in and out of the operating area to a minimum. [2008]

Mechanical bowel preparation

1.2.9 Do not use mechanical bowel preparation routinely to reduce the risk of surgical site infection. [2008]

Hand jewellery, artificial nails and nail polish

1.2.10 The operating team should remove hand jewellery before operations. [2008]

1.2.11 The operating team should remove artificial nails and nail polish before operations. [2008]

Antibiotic prophylaxis

1.2.12 Give antibiotic prophylaxis to patients before:

- clean surgery involving the placement of a prosthesis or implant
- clean-contaminated surgery
- contaminated surgery. [2008]

For advice on antibiotic prophylaxis before caesarean section, see the section on surgical techniques for caesarean section: timing of antibiotic administration in NICE's guideline on caesarean section. For information on antimicrobial stewardship programmes see the NICE guideline on antimicrobial stewardship: systems and processes for effective antimicrobial medicine use.

1.2.13 Do not use antibiotic prophylaxis routinely for clean non-prosthetic uncomplicated surgery. [2008]
1.2.14 Use the local antibiotic formulary and always take into account the potential adverse effects when choosing specific antibiotics for prophylaxis. [2008]

1.2.15 Consider giving a single dose of antibiotic prophylaxis intravenously on starting anaesthesia. However, give prophylaxis earlier for operations in which a tourniquet is used. [2008]

1.2.16 Before giving antibiotic prophylaxis, take into account the timing and pharmacokinetics (for example, the serum half-life) and necessary infusion time of the antibiotic. Give a repeat dose of antibiotic prophylaxis when the operation is longer than the half-life of the antibiotic given. [2008]

1.2.17 Give antibiotic treatment (in addition to prophylaxis) to patients having surgery on a dirty or infected wound. [2008]

1.2.18 Inform patients before the operation, whenever possible, if they will need antibiotic prophylaxis, and afterwards if they have been given antibiotics during their operation. [2008]

1.3 *Intraoperative phase*

Hand decontamination

1.3.1 The operating team should wash their hands prior to the first operation on the list using an aqueous antiseptic surgical solution, with a single-use brush or pick for the nails, and ensure that hands and nails are visibly clean. [2008]

1.3.2 Before subsequent operations, hands should be washed using either an alcoholic hand rub or an antiseptic surgical solution. If hands are soiled then they should be washed again with an antiseptic surgical solution. [2008]

Incise drapes

1.3.3 Do not use non-iodophor-impregnated incise drapes routinely for surgery as they may increase the risk of surgical site infection. [2008]

1.3.4 If an incise drape is required, use an iodophor-impregnated drape unless the patient has an iodine allergy. [2008]
Sterile gowns

1.3.5 The operating team should wear sterile gowns in the operating theatre during the operation. [2008]

Gloves

1.3.6 Consider wearing 2 pairs of sterile gloves when there is a high risk of glove perforation and the consequences of contamination may be serious. [2008]

Antiseptic skin preparation

1.3.7 Prepare the skin at the surgical site immediately before incision using an antiseptic preparation. [2019]

1.3.8 Be aware of the risks of using skin antiseptics in babies, in particular the risk of severe chemical injuries with the use of chlorhexidine (both alcohol-based and aqueous solutions) in preterm babies. [2019]

1.3.9 When deciding which antiseptic skin preparation to use, options may include those in table 1. [2019]

Table 1 Options for antiseptic skin preparation

<table>
<thead>
<tr>
<th>When</th>
<th>Choice of antiseptic skin preparation</th>
</tr>
</thead>
<tbody>
<tr>
<td>First choice unless contraindicated or the surgical site is next to a mucous membrane</td>
<td>Alcohol-based solution of chlorhexidine(^1)</td>
</tr>
<tr>
<td>If the surgical site is next to a mucous membrane</td>
<td>Aqueous solution of chlorhexidine(^2)</td>
</tr>
<tr>
<td>If chlorhexidine is contraindicated</td>
<td>Alcohol-based solution of povidone-iodine(^3)</td>
</tr>
<tr>
<td>If both an alcohol-based solution and chlorhexidine are unsuitable</td>
<td>Aqueous solution of povidone-iodine(^4)</td>
</tr>
</tbody>
</table>
At the time of publication (April 2019), 0.5% chlorhexidine in 70% alcohol solution (Hydrex; Prevase) had a UK marketing authorisation for ‘preoperative skin disinfection prior to minor surgical procedures’ and 2.0% chlorhexidine in 70% alcohol applicators (ChloraPrep) had a UK marketing authorisation for ‘disinfection of the skin prior to invasive medical procedures’. Other formulations of chlorhexidine in alcohol did not have UK marketing authorisation for these uses. The prescriber should follow relevant professional guidance, taking full responsibility for the decision. Informed consent should be obtained and documented. See the General Medical Council’s Prescribing guidance: prescribing unlicensed medicines for further information.

At the time of publication (April 2019), 4.0% aqueous chlorhexidine (Hibiscrub) had a marketing authorisation for ‘preoperative and postoperative skin antisepsis for patients undergoing elective surgery’ and 4.0% aqueous chlorhexidine (Hydrex Surgical Scrub) had a marketing authorisation for ‘pre-operative skin preparation to surgery’; however, in both cases relevant instructions are limited to use as a body wash to be used before the person enters the operating theatre. Other formulations of aqueous chlorhexidine did not have UK marketing authorisation for these uses. The prescriber should follow relevant professional guidance, taking full responsibility for the decision. Informed consent should be obtained and documented. See the General Medical Council’s Prescribing guidance: prescribing unlicensed medicines for further information.

At the time of publication (April 2019), 10% povidone-iodine alcoholic solution (Videne alcoholic tincture) had a UK marketing authorisation for ‘topical application’. 10% povidone-iodine (Betadine Alcoholic solution) had a UK marketing authorisation for ‘antiseptic skin cleanser for major and minor surgical procedures’. The prescriber should follow relevant professional guidance, taking full responsibility for the decision. Informed consent should be obtained and documented. See the General Medical Council’s Prescribing guidance: prescribing unlicensed medicines for further information.

At the time of publication (April 2019), 7.5% povidone-iodine surgical scrub solution (Videne) had a UK marketing authorisation for ‘preoperative hand disinfection by the surgical team, or for disinfecting the site of incision prior to elective surgery’ and 7.5% povidone-iodine (Betadine surgical scrub) had a marketing authorisation for ‘preoperative scrubbing and washing by surgeons and theatre staff and preoperative preparation of patients’ skin’. 10% iodine antiseptic solution (Videne) had a UK marketing authorisation for ‘disinfection of intact external skin or as a mucosal antiseptic’ and 10% povidone-iodine solution (Standardised Betadine antiseptic solution) had a UK marketing authorisation for ‘preoperative and postoperative antiseptic skin cleanser for major and minor surgical procedures’. The prescriber should follow relevant professional guidance, taking full responsibility for the decision. Informed consent should be obtained and documented. See the General Medical Council’s Prescribing guidance: prescribing unlicensed medicines for further information.
Council's Prescribing guidance: prescribing unlicensed medicines for further information.

1.3.10 If diathermy is to be carried out:

- use evaporation to dry antiseptic skin preparations and
- avoid pooling of alcohol-based preparations. [2019]

To find out why the committee made the 2019 recommendations on antiseptic skin preparation and how they might affect practice, see rationale and impact.

Diathermy

1.3.11 Do not use diathermy for surgical incision to reduce the risk of surgical site infection. [2008]

Maintaining patient homeostasis

1.3.12 Maintain patient temperature in line with NICE’s guideline on hypothermia: prevention and management in adults having surgery. [2008]

1.3.13 Maintain optimal oxygenation during surgery. In particular, give patients sufficient oxygen during major surgery and in the recovery period to ensure that a haemoglobin saturation of more than 95% is maintained. [2008]

1.3.14 Maintain adequate perfusion during surgery. [2008]

1.3.15 Do not give insulin routinely to patients who do not have diabetes to optimise blood glucose postoperatively as a means of reducing the risk of surgical site infection. [2008]

Wound irrigation and intracavity lavage

1.3.16 Do not use wound irrigation to reduce the risk of surgical site infection. [2008]

1.3.17 Do not use intracavity lavage to reduce the risk of surgical site infection. [2008]
Antiseptics and antibiotics before wound closure

1.3.18 Only apply an antiseptic or antibiotic to the wound before closure as part of a clinical research trial. [2019]

1.3.19 Consider using gentamicin-collagen implants in cardiac surgery. [2019]

To find out why the committee made the 2019 recommendations on antiseptics and antibiotics before wound closure and how they might affect practice, see rationale and impact.

Closure methods

1.3.20 When using sutures, consider using antimicrobial triclosan-coated sutures, especially for paediatric surgery, to reduce the risk of surgical site infection. [2019]

1.3.21 Consider using sutures rather than staples to close the skin after caesarean section to reduce the risk of superficial wound dehiscence. [2019]

To find out why the committee made the 2019 recommendations on closure methods and how they might affect practice, see rationale and impact.

Wound dressings

1.3.22 Cover surgical incisions with an appropriate interactive dressing at the end of the operation. [2008]

1.4 Postoperative phase

Changing dressings

1.4.1 Use an aseptic non-touch technique for changing or removing surgical wound dressings. [2008]

Postoperative cleansing

1.4.2 Use sterile saline for wound cleansing up to 48 hours after surgery. [2008]
1.4.3 Advise patients that they may shower safely 48 hours after surgery. [2008]

1.4.4 Use tap water for wound cleansing after 48 hours if the surgical wound has separated or has been surgically opened to drain pus. [2008]

Topical antimicrobial agents for wound healing by primary intention

1.4.5 Do not use topical antimicrobial agents for surgical wounds that are healing by primary intention to reduce the risk of surgical site infection. [2008]

Dressings for wound healing by secondary intention

1.4.6 Do not use Eusol and gauze, or moist cotton gauze or mercuric antiseptic solutions to manage surgical wounds that are healing by secondary intention. [2008]

1.4.7 Use an appropriate interactive dressing to manage surgical wounds that are healing by secondary intention. [2008]

1.4.8 Ask a tissue viability nurse (or another healthcare professional with tissue viability expertise) for advice on appropriate dressings for the management of surgical wounds that are healing by secondary intention. [2008]

Antibiotic treatment of surgical site infection and treatment failure

1.4.9 When surgical site infection is suspected by the presence of cellulitis, either by a new infection or an infection caused by treatment failure, give the patient an antibiotic that covers the likely causative organisms. Consider local resistance patterns and the results of microbiological tests in choosing an antibiotic. For information on antimicrobial stewardship programmes see the NICE guideline on antimicrobial stewardship: systems and processes for effective antimicrobial medicine use. [2008]

Debridement

1.4.10 Do not use Eusol and gauze, or dextranomer or enzymatic treatments for debridement in the management of surgical site infection. [2008]
Specialist wound care services

1.4.11 Use a structured approach to care to improve overall management of surgical wounds. This should include preoperative assessments to identify people with potential wound healing problems. Enhanced education of healthcare workers, patients and carers, and sharing of clinical expertise is needed to support this. [2008]

Terms used in this guideline

Decolonisation

The process of eradicating or reducing asymptomatic carriage of methicillin-resistant S. aureus (MRSA). This used to be referred to as decontamination.

Healing by primary intention

Occurs when a wound has been sutured after an operation and heals to leave a minimal, cosmetically acceptable scar.

Healing by secondary intention

Occurs when a wound is deliberately left open at the end of an operation because of excessive bacterial contamination, particularly by anaerobes or when there is a risk of devitalised tissue, which leads to infection and delayed healing. It may be sutured within a few days (delayed primary closure), or much later when the wound is clean and granulating (secondary closure), or left to complete healing naturally without suturing.

Interactive dressing

Dressings designed to promote the wound healing process through the creation and maintenance of a local, warm, moist environment underneath the chosen dressing, when left in place for a period indicated through a continuous assessment process.

Surgical site (wound) infection

A surgical wound with local signs and symptoms of infection, for example, heat, redness, pain and swelling, and (in more serious cases) with systemic signs of fever or a raised white blood cell count. Infection in the surgical wound may prevent healing, causing the wound edges to separate, or it may cause an abscess to form in the deeper tissues.
Definitions of the severity of surgical site infections vary and this should be taken into account when comparing reported rates of surgical site infection.

Surgical wound classification

Clean: an incision in which no inflammation is encountered in a surgical procedure, without a break in sterile technique, and during which the respiratory, alimentary or genitourinary tracts are not entered.

Clean-contaminated: an incision through which the respiratory, alimentary, or genitourinary tract is entered under controlled conditions but with no contamination encountered.

Contaminated: an incision undertaken during an operation in which there is a major break in sterile technique or gross spillage from the gastrointestinal tract, or an incision in which acute, non-purulent inflammation is encountered. Open traumatic wounds that are more than 12 to 24 hours old also fall into this category.

Dirty or infected: an incision undertaken during an operation in which the viscera are perforated or when acute inflammation with pus is encountered (for example, emergency surgery for faecal peritonitis), and for traumatic wounds if treatment is delayed, there is faecal contamination, or devitalised tissue is present.
Recommendations for research

The 2008 guideline committee made the following recommendations for research marked [2008]. The guideline committee's full set of research recommendations is detailed in the 2008 full guideline.

As part of the 2019 update, the guideline committee updated research recommendations on nasal decolonisation and wound closure methods, and made new research recommendations on antiseptic skin preparation and antiseptics and antibiotics before wound closure. These are marked [2019].

Key recommendations for research

1 Nasal decolonisation: effectiveness

What is the clinical effectiveness of preoperative nasal decolonisation using mupirocin in combination with a chlorhexidine body wash in the whole population? [2019]

2 Nasal decolonisation: antimicrobial resistance

Is the use of chlorhexidine body wash associated with increased antimicrobial resistance? [2019]

To find out why the committee made the research recommendations on nasal decolonisation see rationale and impact.

3 Antiseptic skin preparation

What is the clinical and cost effectiveness of chlorhexidine in alcohol at different concentrations in the prevention of surgical site infection when applied to the skin before incision? [2019]

To find out why the committee made the research recommendation on antiseptic skin preparation see rationale and impact.

4 Antiseptics and antibiotics before wound closure

Is the application of antiseptics and antibiotics in the operative field before wound closure, clinically and cost effective in reducing surgical site infection rates? [2019]

To find out why the committee made the research recommendation on antiseptics and antibiotics
before wound closure see rationale and impact.

5 Closure methods

Which patient groups, contamination groups and which layers gain the most benefit from the use of triclosan-coated or triclosan-impregnated sutures? [2019]

To find out why the committee made the research recommendation on closure methods see rationale and impact.

Other recommendations for research

Nasal decolonisation: effectiveness

What is the contribution to clinical effectiveness of the timing of nasal decolonisation and body wash for the prevention of surgical site infection? [2019]

What is the effectiveness of decolonisation using alternative interventions in combination with nasal decolonisation in the prevention of surgical site infections when chlorhexidine is contraindicated? [2019]

Antiseptic skin preparation

What is the clinical and cost effectiveness of a double application of antiseptic to the skin at the surgical site compared with a single application? [2019]

What is the clinical and cost effectiveness of different modes of applying skin antiseptic before incision in the prevention of surgical site infection? [2019]

Closure methods

Does the use of barbed sutures for wound closure reduce the incidence of surgical site infection? [2019]

Which closure method or technique is the most effective for reducing surgical site infections in patients undergoing emergency surgery? [2019]
Rationale and impact

These sections briefly explain why the committee made the recommendations and how they might affect practice. They link to details of the evidence and a full description of the committee's discussion.

Nasal decolonisation

Recommendations 1.2.2 to 1.2.3

Why the committee made the recommendations

Evidence was identified on the use of mupirocin alone and mupirocin in combination with a chlorhexidine body wash. Mupirocin alone was effective in reducing *Staphylococcus aureus* infections caught in hospital in people who were identified as carriers of *S. aureus*. However, mupirocin alone did not reduce surgical site infections across all people undergoing surgery.

The evidence also showed that people identified as carriers of *S. aureus* who used nasal mupirocin in combination with a chlorhexidine body wash before surgery had fewer surgical site infections caused by *S. aureus* (including deep infections, methicillin-sensitive infections and infections caught in hospital) than those who did not have the intervention. However, the evidence was very limited and only covered *S. aureus* carriers.

Economic studies favoured the use of mupirocin alone. However, the studies were not UK-based and could not be applied to NHS practice (for example, because of the high cost of treating surgical site infections in US studies). An economic model based on UK data demonstrated that, compared with no treatment, using mupirocin with a chlorhexidine body wash before all operations was an efficient use of resources in most specialist surgeries. However, there was less certainty of cost effectiveness for surgery with a low risk of surgical site infections caused by *S. aureus*.

Because of the limited evidence, the committee were unable to make strong recommendations on nasal decolonisation before surgery and agreed that it should not be offered to all people having surgery. The committee applied their clinical understanding and experience of current best practice, and recommended that nasal mupirocin with chlorhexidine body wash should be considered before procedures that have an increased risk of surgical site infection caused by *S. aureus*, for which there would be the most benefit.

The recommendation does not define the surgical procedures in which *S. aureus* is a likely cause of a...
surgical site infection. The committee agreed that although cardiac and orthopaedic surgery can be considered high risk, decisions should be made locally through discussions between surgical and infection control teams, and should also take into account patient risk factors, such as whether the person is an *S. aureus* carrier and the potential impact of infection on the person, including the cost of managing the infection. The recommendation does not give an optimal timing for nasal decolonisation because of a lack of evidence. But the committee were aware that mupirocin with chlorhexidine can be given from 2 days before surgery to 3 days after surgery.

The committee also took into consideration the potential side effects of mupirocin (such as a burning sensation and local reactions) and the cautions identified for the use of chlorhexidine solution in people with existing skin conditions and in preterm newborn babies. The committee noted that the Medicines and Healthcare products Regulatory Agency (MHRA) has published advice on the use of *chlorhexidine for skin disinfection in premature babies*.

There was also a lack of evidence on antimicrobial resistance associated with the use of mupirocin and chlorhexidine body wash. The committee agreed that it would be helpful to encourage service providers to maintain surveillance on antimicrobial resistance associated with the use of mupirocin. This would allow any increase in resistance to be captured.

The committee developed a **research recommendation** on the effectiveness of nasal mupirocin with chlorhexidine body wash across all surgical procedures to help determine whether this should be extended to all people having surgery. Antimicrobial resistance associated with the use of chlorhexidine body wash was also identified by the committee as an important area for a **research recommendation**.

How the recommendations might affect practice

There is considerable variability in practice. In some services decolonisation is always offered before certain types of surgery, for example, before orthopaedic surgery. In other services decolonisation is offered only to people who are identified as methicillin-resistant *S. aureus* (MRSA) or methicillin-sensitive *S. aureus* (MSSA) carriers.

The new recommendation reflects best practice and allows services the flexibility to consider decolonisation for people who are likely to benefit the most. The recommendation may reduce surgical site infections in people undergoing surgical procedures for which the consequences of an infection are severe, such as cardiac surgery. The evidence suggests that any additional costs incurred in providing decontamination are likely to be more than recouped by savings associated with a lower incidence of surgical site infections. However, the committee acknowledged that there...
may be training implications for those implementing the recommendation.

Maintenance of surveillance systems assessing antimicrobial resistance associated with the use of mupirocin will reinforce good practice.

Full details of the evidence and the committee's discussion are in evidence review A: nasal decontamination in the prevention of surgical site infection.

Return to recommendations

Antiseptic skin preparation

Recommendations 1.3.7 to 1.3.10

Why the committee made the recommendations

Based on their knowledge and experience, the committee agreed that an antiseptic should be used for skin preparation before surgery. Overall, the evidence showed that chlorhexidine in alcohol was associated with the lowest incidence of surgical site infections, whereas aqueous povidone-iodine was associated with the highest incidence. An economic analysis also showed that chlorhexidine in alcohol is likely to be cost effective. Based on the evidence, the committee agreed that an alcohol-based solution of chlorhexidine should usually be the first choice when deciding which antiseptic preparation to use. However, the quality of the studies was not good enough for the committee to make a strong recommendation for the choice of antiseptic preparation.

The committee discussed that alcohol-based solutions should not be applied to mucous membranes because of the risk of burns. For surgical procedures next to mucous membranes, they agreed to recommend an aqueous solution of chlorhexidine as an option for skin preparation. Because of the limited evidence, the committee were unable to make a strong recommendation.

There was little evidence to support the use of povidone-iodine, but based on their clinical experience the committee agreed that it should be an option when chlorhexidine is contraindicated, for example, in people with hypersensitivity to chlorhexidine.

There was no evidence on the use of skin antiseptics in babies. However, the committee were aware of risks, such as burns, associated with their use in this population, and wished to highlight this. The committee noted that the MHRA has published advice on the use of chlorhexidine for skin disinfection in premature babies.
The committee also discussed that some operative procedures may require diathermy. This means that precautions must be taken when using alcohol-based antiseptic solutions because they are flammable and can result in burns. Along with using evaporation to dry antiseptic skin preparations and avoiding pooling, the committee also agreed that soaked materials, drapes or gowns should be removed before diathermy, excessive quantities of alcohol antiseptics should not be used and no excess product should be present before applying an occlusive dressing.

The committee agreed that further research is needed to establish the effectiveness of different concentrations of chlorhexidine in reducing the risk of surgical site infections. Therefore the committee made a research recommendation to examine this further.

How the recommendations might affect practice

Antiseptic skin preparation before skin incision is standard practice although the type of antiseptic used varies depending on the type of surgery.

The recommendations follow current trends in practice and should reduce variation.

Full details of the evidence and the committee's discussion are in evidence review B: skin antiseptics in the prevention of surgical site infection.

Antiseptics and antibiotics before wound closure

Why the committee made the recommendations

Limited evidence was identified on the intraoperative use of topical wound antiseptics before wound closure. Although this evidence suggested that topical povidone-iodine was effective in reducing surgical site infections, the studies were dated. This evidence also suggested that topical antiseptics, such as iodine in alcohol solution, are not effective in reducing surgical site infections.

The evidence on topical antibiotics before wound closure was varied, but also included several older studies. Some studies showed that antibiotics, such as ampicillin powder and cephaloridine, reduced the number of surgical site infections. However, the evidence for other antibiotics, such as vancomycin, which is widely used worldwide and commonly used in cardiac, orthopaedic and spine surgery, suggested no reduction in surgical site infections.
The committee agreed that the evidence was not current or clear enough to make a recommendation on the use of topical antiseptics and antibiotics before wound closure. The committee also took into account concerns about antimicrobial resistance and the potential for multidrug resistance, and agreed that without new conclusive evidence, use of intraoperative topical antibiotic and antiseptics should be stopped. They agreed that this is an important area for further research and recommended that they should be considered only in the context of further research to help limit unnecessary use and determine their clinical effectiveness. They also developed a research recommendation to determine the clinical and cost effectiveness of applying antiseptics and antibiotics before wound closure.

There was some economic evidence that antibiotic-loaded bone cement was cost effective when compared with plain cement. However, the committee were not confident that the evidence was applicable to current NHS practice. In addition, the clinical evidence suggested that antibiotic-loaded bone cement did not reduce the number of surgical site infections. The committee agreed that the evidence was too limited to make a recommendation for this intervention.

Evidence was also identified on the use of gentamicin implants before skin closure during different surgical procedures. In particular, the evidence suggested that gentamicin-collagen implants reduced the incidence of surgical site infections in people at 1 month and 2 months after cardiac surgery. Although the evidence was limited, cardiac surgery is associated with a high risk of surgical site infection, which is expensive to manage. Therefore, the committee agreed that gentamicin-collagen implants should be an option to reduce the risk of infection.

How the recommendations might affect practice

In practice, the use of topical antiseptics and antibiotics before wound closure varies. Limiting their use to clinical trials is likely to reduce their misuse in practice and encourage research in this area.

Although gentamicin-collagen implants are used in cardiac surgery, not all services currently use them. The new recommendation may help to reduce variation and standardise practice. Any additional costs are likely to be balanced by savings from a reduction in the number of surgical site infections.

Full details of the evidence and the committee’s discussion are in evidence review C: intraoperative antiseptics and antibiotics before wound closure.
Closure methods

Recommendations 1.3.20 and 1.3.21

Why the committee made the recommendations

Overall, the evidence suggested that staples increase the incidence of wound dehiscence when compared with sutures for wound closure across different types of surgery. However, when the studies were analysed according to the type of surgery, many of the studies showing this difference were found to be on wound closure after caesarean section. The committee agreed that there was not enough evidence to recommend sutures over staples in all surgery, and decided to focus the recommendation on caesarean section. The committee agreed that this was important in improving recovery for women having caesarean sections, and that it should be reflected in the recommendations. However, the committee noted that the evidence did not capture all populations, for example obese women. Therefore, the recommendation was made to consider sutures rather than staples.

The committee discussed the evidence for antimicrobial triclosan-coated sutures and agreed that the evidence overall favoured triclosan-coated sutures over standard sutures for reducing surgical site infection. However, they noted that the studies covered many different types of surgery and were of variable quality, meaning that it was difficult to be confident of the benefit. Further analysis by the type of surgery showed a clear benefit of using triclosan-coated sutures only in paediatric surgery. The committee therefore agreed that they should be considered as an option for wound closure in all types of surgery, and that their use in paediatric surgery should be emphasised in particular. The committee also developed a research recommendation to better clarify which patients should have triclosan-coated sutures and which surgical layers they should be used for.

How the recommendations might affect practice

The recommendations are unlikely to have a major effect on current practice. Current practice in wound closure varies, so the new recommendations may help to reduce variation and standardise practice.

Using sutures rather than staples for wound closure in caesarean section may lead to a reduction in the number of women experiencing wound dehiscence following surgery, which may reduce the costs of treatment. However, the committee acknowledged that there may be training implications for those implementing the recommendation.

Use of antimicrobial triclosan-coated sutures may increase, which may have cost implications...
because they are more expensive than standard sutures. However, it is likely that the increased cost will be outweighed by savings from a reduction in the number of surgical site infections, which are costly to treat.

Full details of the evidence and the committee's discussion are in evidence review D: closure materials and techniques in the prevention of surgical site infection.

Return to recommendations
Context

Surgical site infection is a type of healthcare-associated infection in which a wound infection occurs after an invasive (surgical) procedure. Other types of healthcare-associated infections that mainly affect surgical patients are postoperative respiratory and urinary tract infections, bacteraemias (including methicillin-resistant Staphylococcus aureus infections and intravascular cannula infections) and antibiotic-related diarrhoeas (particularly Clostridium difficile enteritis). Surgical site infections have been shown to compose up to 20% of all healthcare-associated infections. At least 5% of patients undergoing a surgical procedure develop a surgical site infection.

A surgical site infection may range from a spontaneously limited wound discharge within 7 to 10 days of an operation to a life-threatening postoperative complication, such as a sternal infection after open heart surgery. Most surgical site infections are caused by contamination of an incision with microorganisms from the patient's own body during surgery. Infection caused by microorganisms from an outside source following surgery is less common. Most surgical site infections are preventable. Measures can be taken in the pre-, intra- and postoperative phases of care to reduce the risk of infection.

Surgical site infections can have a significant effect on quality of life for the patient. They are associated with considerable morbidity and extended hospital stay. In addition, surgical site infections result in a considerable financial burden to healthcare providers. Advances in surgery and anaesthesia have resulted in patients who are at greater risk of surgical site infections being considered for surgery. In addition, increased numbers of infections are now being seen in primary care because patients are allowed home earlier following day case and fast-track surgery.

The guideline makes recommendations for prevention and management of surgical site infections based on rigorous evaluation of the best available published evidence.

The guideline will assume that prescribers will use a drug's summary of product characteristics to inform their decisions for individual patients. In addition, published identified characteristics of appropriate interactive dressings and antimicrobial products should be considered before use, and local formularies and guidelines based on local microbial resistance patterns should be used to inform choice of antibiotics.

In 2017, the NICE surveillance team reviewed the guideline and identified new evidence on nasal decolonisation, skin antiseptics, the use of antiseptics and antibiotics before wound closure, and closure methods. This evidence has been reviewed and the recommendations in these areas updated.
Finding more information and resources

You can see everything NICE says on surgical site infections in our interactive flowchart on prevention and control of healthcare-associated infections.

To find out what NICE has said on topics related to this guideline, see our web page on healthcare-associated infections.

For full details of the evidence and the guideline committee's discussions, see the evidence reviews. You can also find information about how the guideline was developed, including details of the committee.

NICE has produced tools and resources to help you put this guideline into practice. For general help and advice on putting NICE guidelines into practice see resources to help you put guidance into practice.
Update information

April 2019: We have reviewed the evidence and made new recommendations on nasal decolonisation, preoperative antiseptic skin preparation, antiseptics and antimicrobials before wound closure, and methods of wound closure to prevent surgical site infections in people having surgery. These recommendations are marked [2019].

Recommendations marked [2008] last had an evidence review in 2008. In some cases, minor changes have been made to the wording to bring the language and style up to date, without changing the meaning.

Minor changes since publication

June 2019: Hydrex Surgical Scrub was added to footnote 2 of table 1.

Accreditation

NICE accredited

www.nice.org.uk/accreditation
WHO. Raccomandazioni basate sull’evidenza sulle misure per la prevenzione delle infezioni del sito chirurgico*

Evidence-based recommendations on measures for the prevention of surgical site infections

Organizzazione Mondiale della Sanità (WHO)

Introduzione
Le infezioni associate all’assistenza (HAI - Health care Associated Infections; IOS - Infezioni nelle Organizzazioni Sanitarie) vengono contratte da pazienti che ricevono cure sanitarie e rappresentano il più frequente evento avverso riguardante la salute dei pazienti in tutto il mondo.

Un recente lavoro dell’Organizzazione Mondiale della Sanità (WHO) evidenzia che l’infezione del sito chirurgico (SSI- Surgical Site Infection; ISC - Infezione del Sito Chirurgico) è la tipologia di IOS più frequente ed indagata nei Paesi a basso e medio reddito, interessando fino ad un terzo dei pazienti che sono stati sottoposti a procedure chirurgiche. Sebbene l’incidenza di ISC sia inferiore nei Paesi a reddito elevato, essa rimane la seconda più frequente tipologia di IOS in Europa e negli Stati Uniti.

Nel percorso di un paziente ricoverato per essere sottoposto ad una procedura chirurgica molti fattori sembrano contribuire al rischio di sviluppare una ISC. Per questo motivo la prevenzione di tali infezioni risulta complessa e richiede l’integrazione di diverse misure preventive da attuarsi prima, durante e dopo la chirurgia. L’implementazione di tali misure non è però standardizzata a livello globale: non sono attualmente disponibili linee guida internazionali in merito e spesso è possibile evidenziare incoerenza nell’interpretazione dell’evidenza e delle raccomandazioni contenute nelle linee guida nazionali.

Lo scopo di queste linee guida è quello di fornire un’ampia serie di raccomandazioni basate sull’evidenza da applicare durante i periodi pre-, intra- e post-operatorio al fine di prevenire la comparsa di ISC, considerando al tempo stesso aspetti correlati alla disponibilità di risorse, ai principi ed alle preferenze delle singole realtà.

Anche se le seguenti linee guida sono intese per pazienti chirurgici di tutte le età, alcune raccomandazioni non possono essere applicate alla popolazione pediatrica a causa della mancanza di evidenze o di non applicabilità. In ognuno di questi casi, la non applicabilità della raccomandazione alla popolazione pediatrica è enunciata in modo chiaro.

A chi sono rivolte queste linee guida?
Il target primario di queste linee guida è il team chirurgico, rappresentato da chirurghi, infermieri, staff di supporto tecnico, anestesisti e qualsiasi professionista che sia direttamente coinvolto nello svolgimento della procedura chirurgica. Anche i farmacisti e coloro che si occupano delle procedure di sterilizzazione sono interessati a alcuni aspetti di queste linee guida.

Le raccomandazioni possono inoltre essere utilizzate da coloro che si occupano di politiche sanitarie, amministratori e professionisti coinvolti nei programmi di controllo e prevenzione delle infezioni come base per sviluppare protocolli e politiche nazionali e locali sul controllo delle ISC, oltre che nell’ambito dell’educazione e dell’addestramento.

Metodi di sviluppo delle linee guida
Questa linea guida sono state sviluppate in accordo con i processi descritti nel WHO handbook for guideline development, pubblicato nel 2014.

In sintesi, il processo è stato così suddiviso:
1. identificazione dei principali obiettivi e degli argomenti prioritari e formulazione di una serie di quesiti strutturati secondo il formato PICO (Popolazione, Intervento, Comparazione, Outcome/risultato/esito);
2. recupero delle evidenze attraverso specifiche revisioni sistematiche di ciascun argomento, utilizzando metodologie standardizzate e concordate;
3. valutazione e sintesi dell’evidenza;
4. formulazione di raccomandazioni;
5. stesura del contenuto delle linee guida e pianificazione della loro distribuzione e delle strategie di implementazione associate.

Utilizzando la lista di argomenti prioritari, quesiti ed esiti critici identificati dal Comitato direttivo, dal GDG e dal metodologo delle linee guida durante una riunione convocata dalla WHO nel settembre 2014, il Gruppo di esperti di revisioni sistematiche ha condotto 27 revisioni sistematiche per procurare le evidenze di supporto per lo sviluppo delle raccomandazioni; le sintesi di queste revisioni sistematiche

sono disponibili in forma di appendici on-line alle linee guida. L’evidenza scientifica è stata sintetizzata utilizzando il sistema GRADE (Grading of Recommendations, Assessment, Development and Evaluation). La WHO ha convocato quattro consultazioni tecniche del GDG tra il giugno 2014 ed il novembre 2015 per formulare ed approvare le raccomandazioni basate sui profili di evidenza. In accordo con il metodo e la segreteria del Comitato direttivo, cinque raccomandazioni sono state ridiscusse dopo le riunioni attraverso consultazioni online del GDG e leggermente modificate, basandosi sia sui commenti dei peer-reviewers esterni che sull’emergenza di nuove evidenze.

Le linee guida sono costituite da una sezione centrale in cui ad ogni raccomandazione viene dedicato un capitolo, suddiviso in sotto-sezioni in base alla sua applicazione nel periodo pre-, intra- e post-operatorio. Tale sezione è preceduta da un capitolo che illustra altri importanti problemi nell’approccio alla prevenzione delle ISC che non sono oggetto di raccomandazioni, ma dei quali i fruitori devono essere pienamente consapevoli. Viene inoltre fornita come appendice on-line una sintesi delle principali linee guida nazionali esistenti in merito alla prevenzione delle ISC.

Raccomandazioni
Le consultazioni tecniche della WHO hanno portato all’adozione di 29 raccomandazioni che coprono 23 argomenti riguardanti la prevenzione delle ISC nel periodo pre-, intra- e post-operatorio (vedi Tabella). Per 4 argomenti il GDG ha considerato le evidenze disponibili non sufficienti per lo sviluppo di raccomandazioni specifiche.

Per ciascuna raccomandazione la qualità dell’evidenza è stata classificata in “molto bassa”, “bassa”, “moderata” o “alta”. Il GDG ha qualificato l’indicazione e la forza di ciascuna raccomandazione considerando la qualità dell’evidenza ed altri fattori, incluso il rapporto rischio-beneficio, i principi e le preferenze dei soggetti interessati e l’impiego di risorse richiesto dai diversi interventi.

Per assicurarsi che ciascuna raccomandazione sia correttamente compresa ed applicata nella pratica clinica, il GDG ha fornito ulteriori osservazioni, ove necessario. I fruitori delle linee guida devono fare riferimento a tali osservazioni, così come alla sintesi delle evidenze fornite in ciascun capitolo delle raccomandazioni.

La sintesi delle revisioni sistematiche, inclusa la valutazione del rischio di bias e le tabelle GRADE, sono disponibili in appendici on-line alle linee guida. Ciascun capitolo comprende anche un’agenda di ricerca identificata dal GDG per ogni argomento.

Le raccomandazioni per la prevenzione delle ISC da applicare o considerare nei periodi pre-, intra- e post-operatori sono sintetizzate nella Tabella 1, insieme ai quesiti PICO associati, alla forza ed alla qualità della loro evidenza. In accordo con le procedure di sviluppo delle linee guida WHO, queste raccomandazioni saranno rivedute ed aggiornate in seguito all’identificazione di nuove evidenze almeno ogni cinque anni. La WHO incoraggia ad inviare suggerimenti riguardanti ulteriori argomenti da includere nei futuri aggiornamenti delle linee guida.
WHO. Raccomandazioni basate sull'evidenza sulle misure per la prevenzione delle infezioni del sito chirurgico

Tabella – Sintesi degli argomenti principali, dei quesiti di ricerca e delle raccomandazioni per la prevenzione delle infezioni del sito chirurgico (ISC).

<table>
<thead>
<tr>
<th>Argomento</th>
<th>Quesito</th>
<th>Raccomandazioni</th>
<th>Forza</th>
<th>Qualità dell’evidenza</th>
</tr>
</thead>
<tbody>
<tr>
<td>MISURE PRE-OPERATORIE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Lavaggio pre-operatorio | 1. Il lavaggio pre-operatorio con un sapone antimicrobico è più efficiente nel ridurre l’incidenza di ISC nei pazienti chirurgici rispetto al lavaggio con sapone comune?
2. Il lavaggio con garze impregnate di clorexidina gluconato è più efficiente nel ridurre l’incidenza di ISC nei pazienti chirurgici rispetto al lavaggio con sapone antimicrobico? | È buona pratica clinica che i pazienti facciano un bagno o una doccia prima della procedura chirurgica.
Il comitato indica che sia il sapone comune sia il sapone antimicrobico possono essere utilizzati a questo scopo.
Il comitato ha scelto di non formulare raccomandazioni sull’utilizzo di garze impregnate di clorexidina gluconato a causa della qualità molto bassa delle evidenze. | Condizionato alla valutazione locale | Moderata |
| Decolonizzazione con mupirocina pomata con o senza lavaggio del corpo con clorexidina gluconato per la prevenzione di infezioni da *Staphylococcus aureus* in pazienti portatori a livello nasale | La pomata nasale di mupirocina in associazione o meno con lavaggio del corpo con clorexidina gluconato è efficace nel ridurre il numero di infezioni da *S. aureus* in pazienti portatori a livello nasale candidati a procedure chirurgiche? | I pazienti candidati a procedure di chirurgia cardiotoracica od ortopedica portatori nasali di *S. aureus* devono ricevere applicazioni intranasali peri-operatorie di mupirocina pomata 2% con o senza aggiunta di lavaggio corporeo con clorexidina gluconato.
Il comitato suggerisce di considerare il trattamento anche nei pazienti portatori nasali di *S. aureus* candidati ad altri tipi di interventi chirurgici con applicazioni intranasali peri-operatorie di mupirocina pomata 2% con o senza aggiunta di lavaggio corporeo con clorexidina gluconato. | Condizionato alla valutazione locale | Moderata |
| Screening per la colonizzazione da ESBL ed impatto sulla profilassi antibiotica chirurgica | 1. Vi è necessità di modificare la SAP nelle aree ad alta prevalenza (>10%) di ESBL?
2. Vi è necessità di modificare la SAP in pazienti portatori o colonizzati da ESBL?
3. Vi è necessità di eseguire uno screening per ESBL prima della procedura chirurgica? | Il comitato ha deciso di non formulare raccomandazioni a causa della mancanza di evidenze. | NA | NA |
| Tempistica ottimale per l’inizio della profilassi antibiotica chirurgica | Qual è l’impatto della tempistica della SAP sul rischio di ISC e quale è la tempistica ottimale? | La SAP deve essere somministrata prima dell’incisione chirurgica quando indicato (in base al tipo di intervento).
La somministrazione di SAP va effettuata entro 120 minuti prima dell’incisione, considerando l’emivita dell’antibiotico. | Forte | Bassa |

continua
Tabella – Sintesi degli argomenti principali, dei quesiti di ricerca e delle raccomandazioni per la prevenzione delle infezioni del sito chirurgico (ISC).

<table>
<thead>
<tr>
<th>Argomento</th>
<th>Quesito</th>
<th>Raccomandazioni</th>
<th>Forza</th>
<th>Qualità dell'evidenza</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparazione intestinale meccanica e utilizzo di antibiotici orali</td>
<td>La preparazione intestinale meccanica, combinata o meno con utilizzo di antibiotici orali, è efficace per la prevenzione di ISC nella chirurgia del colon-retto?</td>
<td>Il comitato suggerisce l’utilizzo di antibiotici orali pre-operatori in associazione con la preparazione intestinale meccanica per ridurre il rischio di ISC nei pazienti adulti candidati a chirurgia in elezione del colon-retto. La sola preparazione intestinale meccanica (senza l’utilizzo di antibiotici orali) non deve essere utilizzata allo scopo di ridurre le ISC nei pazienti adulti candidati a chirurgia in elezione del colon-retto.</td>
<td>Condizionato alla valutazione locale</td>
<td>Moderata</td>
</tr>
<tr>
<td>Tricotomia</td>
<td>1. La tricotomia influenza sull’incidenza di ISC?</td>
<td>Non praticare la tricotomia nei pazienti sottoposti a qualsiasi tipo di intervento chirurgico. Se assolutamente necessario, i peli andrebbero rimossi esclusivamente con rasoi elettrici (clipper). La rasatura con lame tradizionali è fortemente sconsigliata in qualsiasi caso, sia nella fase preoperatoria sia in sala operatoria</td>
<td>Forte</td>
<td>Moderata</td>
</tr>
<tr>
<td>Preparazione del sito chirurgico</td>
<td>Per la preparazione cutanea nei pazienti candidati ad interventi chirurgici vanno utilizzate soluzioni antisettiche a base alcolica e, nello specifico, vanno utilizzate clorexidina gluconato e iodopovidone?</td>
<td>Utilizzare antisettici a base alcolica contenenti clorexidina gluconato per la preparazione della cute in pazienti candidati a procedure chirurgiche.</td>
<td>Forte</td>
<td>Bassa-Moderata</td>
</tr>
<tr>
<td>Sigillanti cutanei antimicrobici</td>
<td>È consigliato utilizzare sigillanti cutanei antimicrobici (in aggiunta alla preparazione cutanea standard del sito chirurgico) nei pazienti sottoposti a procedure chirurgiche, rispetto alla sola preparazione cutanea del sito chirurgico?</td>
<td>I sigillanti cutanei antimicrobici non devono essere utilizzati dopo la preparazione cutanea del sito chirurgico allo scopo di ridurre le ISC.</td>
<td>Condizionato alla valutazione locale</td>
<td>Molto bassa</td>
</tr>
<tr>
<td>Preparazione chirurgica delle mani</td>
<td>1. Qual è il prodotto più efficace per la preparazione chirurgica delle mani allo scopo di prevenire le ISC? 2. Quali sono la tecnica più efficace e la durata ideale della preparazione chirurgica delle mani?</td>
<td>La preparazione chirurgica delle mani può essere eseguita sia lavandole con un adeguato sapone antimicrobico ed acqua sia frizionandole con un'adeguata soluzione a base alcolica prima di indossare i guanti sterili.</td>
<td>Forte</td>
<td>Moderata</td>
</tr>
</tbody>
</table>

continua→
WHO. Raccomandazioni basate sull'evidenza sulle misure per la prevenzione delle infezioni del sito chirurgico

Tabella – Sintesi degli argomenti principali, dei quesiti di ricerca e delle raccomandazioni per la prevenzione delle infezioni del sito chirurgico (ISC).

<table>
<thead>
<tr>
<th>Argomento</th>
<th>Quesito</th>
<th>Raccomandazioni</th>
<th>Forza</th>
<th>Qualità dell’evidenza</th>
</tr>
</thead>
<tbody>
<tr>
<td>MISURE PREOPERATORIE E/O INTRAOPERATORIE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supporto nutrizionale intensificato</td>
<td>Nei pazienti chirurgici va utilizzato un supporto nutrizionale intensificato al fine di prevenire le ISC?</td>
<td>Il comitato suggerisce di considerare la somministrazione di preparazioni nutrizionali con aggiunta di nutrienti multipli per via orale o enterale allo scopo di prevenire le ISC in pazienti sottopeso sottoposti ad interventi di chirurgia maggiore</td>
<td>Condizionato alla valutazione locale</td>
<td>Molto bassa</td>
</tr>
<tr>
<td>Interruzione perioperatoria di agenti immuno-soppressivi</td>
<td>Gli agenti immunosoppressivi vanno interrotti nel periodo perioperatorio? Questo ha effetto sull'incidenza di ISC?</td>
<td>Il comitato consiglia di non interrompere le terapie immuno-soppressive prima di una procedura chirurgica allo scopo di prevenire ISC.</td>
<td>Condizionato alla valutazione locale</td>
<td>Molto bassa</td>
</tr>
<tr>
<td>Ossigenazione perioperatoria</td>
<td>Quanto è sicuro ed efficace l’utilizzo di un’aumentata frazione inspirata di ossigeno (FiO2) nel ridurre il rischio di ISC?</td>
<td>I pazienti adulti sottoposti ad anestesia generale con intubazione endotracheale per procedure chirurgiche devono ricevere una FiO2 dell’80% intraoperatoriamente e, se possibile, nell’immediato periodo post-operatorio per 2-6 ore al fine di ridurre il rischio di ISC.</td>
<td>Forte</td>
<td>Moderata</td>
</tr>
<tr>
<td>MISURE PREOPERATORIE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mantenere la normale temperatura corporea (normotermia)</td>
<td>Si dovrebbe utilizzare il riscaldamento del corpo invece di non adottare misure di termoregolazione per prevenire le ISC?</td>
<td>Il comitato suggerisce di utilizzare dispositivi di riscaldamento del corpo del paziente in sala operatoria e durante l’operazione chirurgica per ridurre le ISC.</td>
<td>Condizionato alla valutazione locale</td>
<td>Moderato</td>
</tr>
<tr>
<td>Utilizzo di protocolli per un monitoraggio intensivo della glicemia perioperatoria</td>
<td>1. I protocolli atti a mantenere livelli ottimali di glicemia perioperatoria riducono il rischio di ISC?</td>
<td>Il comitato suggerisce l’utilizzo di protocolli per un monitoraggio intensivo della glicemia perioperatoria per adulti, diabetici e non diabetici, che devono essere sottoposti a procedure chirurgiche, allo scopo di ridurre il rischio di ISC.</td>
<td>Condizionato alla valutazione locale</td>
<td>Basso</td>
</tr>
<tr>
<td></td>
<td>2. Quali sono i valori ottimali di glicemia perioperatoria nei pazienti diabetici e non diabetici?</td>
<td>Il comitato ha deciso di non formulare una raccomandazione su questo punto a causa della mancanza di evidenza per la domanda 2.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mantenere un adeguato monitoraggio del volume circolante/normovolemia</td>
<td>L’utilizzo di specifiche strategie di gestione dei fluidi corporei durante la chirurgia influenza l’incidenza di ISC?</td>
<td>Il comitato suggerisce di adottare intra-operatoriamente opportune terapie con obiettivi mirati per la regolazione dei fluidi corporei per ridurre il rischio di ISC.</td>
<td>Condizionato alla valutazione locale</td>
<td>Basso</td>
</tr>
</tbody>
</table>
Tabella – Sintesi degli argomenti principali, dei quesiti di ricerca e delle raccomandazioni per la prevenzione delle infezioni del sito chirurgico (ISC).

<table>
<thead>
<tr>
<th>Argomento</th>
<th>Quesito</th>
<th>Raccomandazioni</th>
<th>Forza</th>
<th>Qualità dell'evidenza</th>
</tr>
</thead>
<tbody>
<tr>
<td>Misure preoperatorie</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teli e camici</td>
<td>1. C’è differenza nei tassi di incidenza di ISC con l’utilizzo di teli chirurgici e camici di tessuto-non-tessuto monouso piuttosto che con teli chirurgici e camici in tessuto riutilizzabili?</td>
<td>Il comitato suggerisce che l’utilizzo di teli chirurgici e camici sterilì in tessuto-non-tessuto monouso oppure in tessuto riutilizzabili possano entrambi essere utili per prevenire ISC. Non è stata rintratta nessuna specifica evidenza per rispondere alle domande 1.1 e 1.2</td>
<td>Condizionato alla valutazione locale</td>
<td>Da moderato a molto basso</td>
</tr>
<tr>
<td></td>
<td>1.1 C’è differenza nei tassi di incidenza di ISC con l’utilizzo di teli chirurgici di tessuto-non-tessuto monouso piuttosto che con teli chirurgici in tessuto riutilizzabili?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.2 C’è differenza nei tassi di incidenza di ISC con l’utilizzo di camici chirurgici monouso piuttosto che di camici in tessuto riutilizzabili?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. L’utilizzo di teli chirurgici da incisione adesivi monouso riduce il rischio di ISC?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dispositivi di protezione della ferita</td>
<td>L’utilizzo di dispositivi di protezione della ferita riduce il tasso di ISC nella chirurgia addominale a cielo aperto?</td>
<td>Il comitato suggerisce di considerare l’utilizzo di dispositivi di protezione della ferita nelle procedure chirurgiche addominali pulito-contaminate, contaminate e sporche, allo scopo di ridurre il tasso di ISC.</td>
<td>Condizionato alla valutazione locale</td>
<td>Molto basso</td>
</tr>
<tr>
<td>Irrigazione della ferita incisionale</td>
<td>L’irrigazione intrapoperatoria della ferita riduce il rischio di ISC?</td>
<td></td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>Il comitato ha concluso che non c’è sufficiente evidenza per deporre contro o a favore dell’irrigazione con soluzione fisiologica della ferita incisionale prima della chiusura allo scopo di prevenire ISC.</td>
<td></td>
<td>Condizionato alla valutazione locale</td>
<td>Basso</td>
</tr>
<tr>
<td></td>
<td>Il comitato suggerisce di considerare per l’irrigazione della ferita incisionale una soluzione acquosa di iodopovidone prima della chiusura allo scopo di prevenire ISC, in particolare in ferite pulite e pulito-contaminate.</td>
<td></td>
<td>Condizionato alla valutazione locale</td>
<td>Basso</td>
</tr>
<tr>
<td></td>
<td>Il comitato suggerisce di non irrigare con soluzione antibiotica la ferita incisionale allo scopo di prevenire ISC.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MISURE PREOPERATORIE

Terapia profilattica della ferita mediante pressione topica negativa

L'utilizzo della terapia profilattica della ferita mediante pressione topica negativa riduce il tasso di ISC rispetto alle tecniche di medicazione convenzionali? Indicare l'uso di una terapia profilattica della ferita mediante pressione topica negativa in pazienti adulti su incisioni chirurgiche chiuse in prima intenzione in ferite ad alto rischio per la prevenzione di ISC, tenendo in considerazione l'impatto sulle risorse.

Uso di guanti chirurgici

1. Quando è raccomandato l'utilizzo del doppio guanto?
2. Quali sono i criteri che pongono indicazione al cambiamento dei guanti durante un'operazione?
3. Che tipo di guanti andrebbero utilizzati?

Il comitato suggerisce l'utilizzo di una terapia profilattica della ferita mediante pressione topica negativa in pazienti adulti su incisioni chirurgiche chiuse in prima intenzione in ferite ad alto rischio per la prevenzione di ISC, tenendo in considerazione l'impatto sulle risorse.

Cambio degli strumenti chirurgici

Al momento della chiusura della ferita, c'è differenza in termini di ISC se vengono cambiati gli strumenti per la chiusura dello strato fasciale, sottocutaneo e cutaneo utilizzando nuovi set sterili?

Il comitato ha deciso di non formulare alcuna raccomandazione a causa della mancanza di evidenze che provino che l'utilizzo dei doppio guanti, piuttosto che il cambio dei guanti durante un'operazione od un particolare tipo di guanti sia più efficace nel ridurre le ISC.

Fili di sutura rivestiti di antimicrobico

I fili di sutura rivestiti di antimicrobico sono efficaci per prevenire le ISC? Se sì, quando e come dovrebbero essere utilizzati?

Il comitato suggerisce l'utilizzo di fili di sutura rivestiti di triclosan allo scopo di ridurre il rischio di ISC, a prescindere dal tipo di chirurgia.

Sistemi di ventilazione a flusso laminare nella ventilazione della camera operatoria

1. L'utilizzo di un flusso d'aria laminare in camera operatoria è associato ad una riduzione delle ISC in generale o delle ISC profonde?
2. L'utilizzo di ventilatori o sistemi di raffreddamento aumenta le ISC?
3. La ventilazione naturale è un'alternativa accettabile alla ventilazione meccanica?

Il comitato suggerisce che non si dovrebbe utilizzare la ventilazione a flusso laminare per ridurre il rischio di ISC per pazienti che devono essere sottoposti ad una operazione di artroplastica totale.

Il comitato ha deciso di non formulare raccomandazioni alle domande 1 e 3 a causa di mancanza di evidenze.

<table>
<thead>
<tr>
<th>Argomento</th>
<th>Quesito</th>
<th>Raccomandazioni</th>
<th>Forza</th>
<th>Qualità dell'evidenza</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terapia profilattica della ferita mediante pressione topica negativa</td>
<td>L'utilizzo della terapia profilattica della ferita mediante pressione topica negativa riduce il tasso di ISC rispetto alle tecniche di medicazione convenzionali?</td>
<td>Il comitato suggerisce l'utilizzo di una terapia profilattica della ferita mediante pressione topica negativa in pazienti adulti su incisioni chirurgiche chiuse in prima intenzione in ferite ad alto rischio per la prevenzione di ISC, tenendo in considerazione l'impatto sulle risorse.</td>
<td>Condizionato alla valutazione locale</td>
<td>Basso</td>
</tr>
<tr>
<td>Uso di guanti chirurgici</td>
<td>1. Quando è raccomandato l'utilizzo del doppio guanto?</td>
<td>Il comitato ha deciso di non formulare alcuna raccomandazione a causa della mancanza di evidenze che provino che l'utilizzo dei doppio guanti, piuttosto che il cambio dei guanti durante un'operazione od un particolare tipo di guanti sia più efficace nel ridurre le ISC.</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Cambio degli strumenti chirurgici</td>
<td>Al momento della chiusura della ferita, c'è differenza in termini di ISC se vengono cambiati gli strumenti per la chiusura dello strato fasciale, sottocutaneo e cutaneo utilizzando nuovi set sterili?</td>
<td>Il comitato ha deciso di non formulare una raccomandazione su questo argomento a causa della mancanza di evidenze.</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Fili di sutura rivestiti di antimicrobico</td>
<td>I fili di sutura rivestiti di antimicrobico sono efficaci per prevenire le ISC? Se sì, quando e come dovrebbero essere utilizzati?</td>
<td>Il comitato suggerisce l'utilizzo di fili di sutura rivestiti di triclosan allo scopo di ridurre il rischio di ISC, a prescindere dal tipo di chirurgia.</td>
<td>Condizionato alla valutazione locale</td>
<td>Moderato</td>
</tr>
<tr>
<td>Sistemi di ventilazione a flusso laminare nella ventilazione della camera operatoria</td>
<td>1. L'utilizzo di un flusso d'aria laminare in camera operatoria è associato ad una riduzione delle ISC in generale o delle ISC profonde?</td>
<td>Il comitato suggerisce che non si dovrebbe utilizzare la ventilazione a flusso laminare per ridurre il rischio di ISC per pazienti che devono essere sottoposti ad una operazione di artroplastica totale.</td>
<td>Condizionato alla valutazione locale</td>
<td>Da basso a molto basso</td>
</tr>
<tr>
<td> </td>
<td>2. L'utilizzo di ventilatori o sistemi di raffreddamento aumenta le ISC?</td>
<td>Il comitato ha deciso di non formulare raccomandazioni alle domande 1 e 3 a causa di mancanza di evidenze.</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td> </td>
<td>3. La ventilazione naturale è un'alternativa accettabile alla ventilazione meccanica?</td>
<td> </td>
<td> </td>
<td> </td>
</tr>
</tbody>
</table>
Tabella – Sintesi degli argomenti principali, dei quesiti di ricerca e delle raccomandazioni per la prevenzione delle infezioni del sito chirurgico (ISC).

<table>
<thead>
<tr>
<th>Argomento</th>
<th>Quesito</th>
<th>Raccomandazioni</th>
<th>Forza</th>
<th>Qualità dell'evidenza</th>
</tr>
</thead>
<tbody>
<tr>
<td>MISURE POSTOPERATORIE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prolungamento della profilassi antibiotica chirurgica</td>
<td>Una profilassi antibiotica chirurgica prolungata riduce il rischio di ISC rispetto alla sola profilassi preoperatoria (se necessaria) e intraoperatoria?</td>
<td>Il comitato si esprime contro il prolungamento della profilassi antibiotica chirurgica dopo il completamento dell'operazione allo scopo di prevenire ISC</td>
<td>Forte</td>
<td>Moderato</td>
</tr>
<tr>
<td>Medicazioni avanzate</td>
<td>Nei pazienti chirurgici andrebbero utilizzate per le ferite medicazioni avanzate invece delle classiche medicazioni sterili, allo scopo di prevenire le ISC?</td>
<td>Il comitato suggerisce di non utilizzare alcun tipo di medicazione avanzata invece della medicazione standard nelle ferite chirurgiche chiuse in prima intenzione allo scopo di prevenire le ISC</td>
<td>Condizionato alla valutazione locale</td>
<td>Basso</td>
</tr>
<tr>
<td>Profilassi antimicrobica in presenza di un drenaggio e tempistica ottimale di rimozione del drenaggio da una ferita</td>
<td>1. In presenza di drenaggi, il prolungamento della terapia antibiotica profilattica previene le ISC?</td>
<td>Il comitato suggerisce che la profilassi antibiotica preoperatoria non sia continuata in presenza di un drenaggio in una ferita allo scopo di prevenire una ISC.</td>
<td>Condizionato alla valutazione locale</td>
<td>Basso</td>
</tr>
<tr>
<td></td>
<td>2. Quando si utilizzano drenaggi, per quanto tempo devono essere lasciati in sede al fine di minimizzare il rischio di ISC come complicanza?</td>
<td>Il comitato suggerisce di rimuovere il drenaggio quando clinicamente indicato. Non sono state trovate evidenze per stabilire a priori la corretta tempistica per la rimozione di un drenaggio allo scopo di prevenire ISC.</td>
<td>Condizionato alla valutazione locale</td>
<td>Molto basso</td>
</tr>
</tbody>
</table>

ESBL: betalattamasi a spettro esteso; **NA**: non applicabile; **SAP**: Surgical Antibiotic Prophylaxis.
Impatto e prevenzione delle infezioni del sito chirurgico: una proposta di lavoro sulle linee guida

Authors

N. Petrosillo
Istituto Nazionale per le Malattie Infettive "Lazzaro Spallanzani", Roma

M. Pittiruti, G. Scoppettuolo
Policlinico Universitario "A.Gemelli", Roma

P. A. Cortesi, L. G. Mantovani
CESP, Università Milano Bicocca

A. Belisari
Fondazione CHARTA, Milano
Indice

1 CAPITOLO 1
EPIDEMIOLOGIA E IMPATTO CLINICO DELLE INFEZIONI DEL SITO CHIRURGICO
N. Petrosillo ... 1

2 CAPITOLO 2
IMPATTO ECONOMICO DELLE INFEZIONI DEL SITO CHIRURGICO
P. A. Cortesi, A. Belisari, L. G. Mantovani ... 4

3 CAPITOLO 3
LA PREVENZIONE DELLE INFEZIONI DEL SITO CHIRURGICO E LE LINEE GUIDA
M. Pittiruti, G. Scoppettuolo .. 11
L’"European Centre for Disease Prevention and Control" (ECDC) definisce le infezioni del sito chirurgico (SSI) come infezioni postoperatorie che si verificano entro 30 giorni da una procedura chirurgica, o entro un anno in caso di impianto permanente di dispositivo [1]. Le SSI rappresentano circa un quarto delle infezioni associate alle procedure assistenziali in ambito ospedaliero (Infezioni Nosocomiali (HAI)), ed hanno un impatto negativo in termini di morbosità e mortalità [2]. In Inghilterra si stima che il 77% delle mortalità in pazienti con una SSI sia direttamente attribuibile ad essa [3]. In aggiunta al carico clinico-assistenziale, le SSI aumentano i costi a causa di un prolungamento della degenza, di esami diagnostici aggiuntivi, e di aumentati costi di trattamento [4,5].

Negli Stati Uniti, nel periodo 2009-2010, su un totale di 69.475 infezioni associate alle procedure assistenziali riportate al National Healthcare Safety Network (NHSN) il 23,1% erano SSI. In un recente studio eseguito in 183 ospedali di 10 stati degli Stati Uniti, le SSI rappresentavano a pari merito con le polmoniti le più frequenti infezioni associate all’assistenza (21,8%) [6], con una previsione globale di stima negli Stati Uniti di 157.500 infezioni annue. Dai dati dei CDC, risulta che, nel periodo 2009-2010 [7] il 40% delle SSI si verificavano in chirurgia ortopedica, seguite dal 22,5% dalla chirurgia addominale, il 21,9% in cardiochirurgia, il 9,6% in ostetricia e ginecologia.

In Europa la situazione non è migliore. Nel recente studio di prevalenza europeo (2011-2012) degli ECDC sono stati studiati 231.459 pazienti in 947 ospedali di 30 paesi europei. La prevalenza di infezioni associate alle procedure assistenziali è risultato del 6%, con una variabilità dal 2,3% al 10,8% a seconda dei paesi. Di queste il 19,6% erano SSI, secondo solo alle infezioni delle basse vie respiratorie (23,5%).

In questo studio, gli agenti etiologici maggiormente prevalenti nelle SSI erano i cocchi gram positivi nel 46,3% delle infezioni (Staphylococcus aureus 17,9%, stafilococchi coagulasi negativi 9,6%, Enterococcus spp. 14,5%, Streptococcus spp 3,6, altri 0,6), seguiti dalle Enterobacteriaceae 32,5% (Escherichia coli 14%, Klebsiella spp 6%, Enterobacter spp 5,4%, Proteus spp 3,6%), e dai gram negativi non fermentanti (12,8%) (Pseudomonas aeruginosa 7,6%, Acinetobacter spp 2,9%) [8].

Negli interventi cardiochirurgici il tasso di SSI a 30 giorni dall’intervento è risultato del 3,5%; di queste il 51% erano superficiali, il 34% profonde, il 15% coinvolgenti organo/spazio. Nel 61% dei casi l’etiologia era da cocchi gram positivi, soprattutto stafilococchi, seguiti da Enterobacteriaceae nel 22% dei casi.

Nelle colecistectomie il tasso di SSI a 30 giorni è risultato del 1,4%, il 59% delle quali era superficiale, il 22% profondo e il 17% coinvolgenti organo/spazio. Gli agenti etiologici più rappresentati erano Enterobacteriaceae (50%), seguiti da cocchi gram positivi (37%).

Nella chirurgia colorettale l’incidenza di SSI a 30 giorni è risultata del 9,5%, con il 50% di infezioni superficiali, il 30% profonde...
e il 20% coinvolgenti organo/spazio. Le Enterobacteriaceae (47%) erano gli agenti etiologici più rappresentati seguiti dai cocci gram positivi (30%).

Negli interventi per cesareo l’incidenza di SSI a 30 giorni era del 2,9%, dei quali l’87% erano superficiali, il 10% profonde e il 3% coinvolgenti organo/spazio. I cocci gram positivi rappresentavano il 54% degli agenti etiologici seguiti dalle Enterobacteriaceae (29%).

Negli interventi di protesi dell’anca l’incidenza di SSI a 30 giorni era del 1%, di queste il 39% erano superficiali, il 39% profonde e il 22% coinvolgenti organo/spazio. I cocci gram positivi rappresentavano gli agenti etiologici più frequenti (66%) seguiti dalle Enterobacteriaceae (18%).

Negli interventi di protesi del ginocchio, l’incidenza di SSI a un anno era dello 0,7%, con il 46% di infezioni superficiali, il 32% profonde e il 20% coinvolgenti organo/spazio. Nel 74% dei casi gli agenti etiologici erano rappresentati da cocci gram positivi, seguiti da Enterobacteriaceae nel 12% dei casi.

Nelle laminectomie l’incidenza di SSI a 30 giorni dall’intervento è risultata dello 0,8%, con il 43% di SSI superficiali, il 31% profonde e il 22% coinvolgenti organo/spazio. Nel 57% erano responsabili cocci gram positivi, seguiti da Enterobacteriaceae (23%).

Nel nostro paese sono stati eseguiti due studi nazionali di sorveglianza delle SSI. Il primo studio [10] è stato condotto, per la durata di un mese in 48 chirurgie italiane. Sono stati studiati, fino a 30 giorni dopo l’intervento, quindi anche dopo la dimissione, 4665 interventi chirurgici (chirurgia della mammella, chirurgia del colon, chirurgia gastrica, cesareo, colecistectomia, appendicectomia, erniorrafia, isterectomia vaginale, isterectomia addominale). Il tasso di incidenza di SSI è stato del 5,2% variando dal 18,9% per la chirurgia colorettale, seguita dalla chirurgia gastrica (13,6) e dalle appendicectomie (8,6) fino al 2,6% nel cesareo. All’analisi multivariata, i fattori indipendentemente associati al rischio di SSI sono stati: intervento di emergenza (OR 1,73 con 95%I.C. 1,22-2,44; p=0,02), punteggio NNIS maggiore di 0 (OR 3,34 con 95%I.C. 1,41-7,93; p=0,006), degenza preoperatoria superiore a 1 giorno

(OR 1,45 con 95%I.C. 1,06-1,98; p=0,02) ed uso di drenaggi (OR 2,17 con 95%I.C. 1,39-3,43; p<0,001). Su un totale di 241 SSI, 93 (38,6%) vennero identificate grazie ad una sorveglianza post-dimissione a trenta giorni dall’intervento. I fattori di rischio associati alle SSI post-dimissione comprendevano un punteggio NNIS superiore ad 1, una degenza preoperatoria maggiore di un giorno, l’uso di drenaggi, e l’antibioticoprofilassi perioperatoria.

Nell’ambito del programma nazionale di sorveglianza delle infezioni associate alle procedure assistenziali, Marchi et al. [11] hanno pubblicato i dati del programma nazionale di sorveglianza delle SSI per il periodo dal 2009 al 2011. Il protocollo prevedeva l’adozione delle definizioni degli ECDC e una sorveglianza a trenta giorni dall’intervento. Il numero totale di interventi sottoposti a sorveglianza è stato 54.240 (si trattava di appendicectomie, chirurgia mammaria, colecistectomia, chirurgia del colon, cesareo, chirurgia del retto). Nel 2,6% degli interventi si ebbe una SSI, che in un terzo dei casi era profonda o coinvolgente organo/spazio. All’analisi multivariata la durata dell’intervento sopra il 75° percentile (OR 1,52 con 95%I.C. 1,32-1,74; p<0,001), un punteggio ASA maggiore o uguale a 3 (OR 1,42 con 95%I.C. 1,22-1,65; p<0,001), una degenza preoperatoria maggiore o uguale a 2 giorni (OR 1,22 con 95% I.C. 1,05-1,41; p<0,05), e un intervento di emergenza (OR 1,29 con 95%I.C. 1,11-1,51; p<0,05) erano associati ad un maggior rischio di SSI, mentre un intervento in videolaparoscopia si associava a un significativo minor rischio di SSI (OR: 0,49 con 95%I.C. 0,40-0,61: p<0,001). Inoltre gli interventi eseguiti in ospedali con almeno due anni di sorveglianza avevano una riduzione del rischio di SSI pari al 29%. Il 50% circa delle SSI era stato identificato dieci giorni dopo l’intervento, quando il 90% dei pazienti erano già stati dimessi. Tale tasso saliva all’80% al 16° giorno, e più del 90% al 22° giorno. Per la chirurgia del colon fino al 96% nella chirurgia mammaria, con una media del 60% di SSI identificate con la sorveglianza post-dimissione a 30 giorni dall’intervento.
Bibliografia

Impatto economico delle Infezioni del Sito Chirurgico

P. A. Cortesi, A. Belisari, L. G. Mantovani

Aspetti di rilevanza socio-economica delle SSI a livello internazionale e nazionale

L’insorgenza della patologia infettiva in ambito nosocomiale oltre ad essere causa di sofferenze per i pazienti colpiti con aumento di mortalità e morbidità è anche fonte di una spesa notevole per l’ISSN e per i pazienti stessi, con importanti complessi economico/sociali legate alla possibile inabilità al lavoro e alle implicazioni negative sulla qualità di vita [1-4]. Le infezioni nosocomiali (HAI) presentano grande variabilità sia in termini di gravità clinica che in termini d'impatto economico/socialè a seconda dei diversi distretti che ne possono essere interessati, delle tipologie di infezione e della loro gravità.

Come per altri ambiti riguardanti la sicurezza dei pazienti, le HAI comportano sofferenze addizionali e costi elevati per i pazienti e le loro famiglie. Le infezioni prolungano la permanenza in ospedale, creano disabilità di lungo termine, aumentano la resistenza agli antibiotici, e rappresentano un importante carico economico addizionale per gli ospedali e i sistemi sanitari. Si stima che il totale di HAI raggiunga i 4,1 milioni di casi per anno in Europa e che le HAI si rendano responsabili di circa 1 miliardo di euro [8]. Il costo, prevalentemente associato all’incremento dei giorni di ospedalizzazione, può variare da € 4.000 per un paziente ricoverato nel dipartimento di Medicina a € 28.000 per un paziente ricoverato in Terapia Intensiva, ovvero l’area ospedaliera con la maggior frequenza di infezioni nosocomiali [8].

In Italia, le risorse assorbite dalla gestione delle HAI impattano per lo 0,8% sul PIL, generando una spesa sanitaria aggiuntiva di circa 1 miliardo di euro [8]. Il costo, prevalentemente associato all’incremento dei giorni di ospedalizzazione, può variare da € 4.000 per un paziente ricoverato nel dipartimento di Medicina a € 28.000 per un paziente ricoverato in Terapia Intensiva, ovvero l’area ospedaliera con la maggior frequenza di infezioni nosocomiali [8].

Come già evidenziato in precedenza, tra le HAI, le infezioni del sito chirurgico (SSI) rappresentano il tipo più frequente con un’incidenza di 157 casi per 100.000, e sono la quarta causa di infezione nosocomiale più impattante per complicanze e morbidità [6]. Dal punto di vista economico, i soggetti che sviluppano una SSI tipicamente rimangono per più tempo in ospedale (7-10 giorni), hanno un incremento rischio di passare del tempo in terapia intensiva (+60%), hanno maggior probabilità di essere riammessi in ospedale (fino a 5 volte) e corrono un maggior rischio di morire (fino al doppio) rispetto a soggetti che non sviluppano infezione post-chirurgica [9-12]. Le SSI possono portare con sé anche outcome clinici scadenti come cicatrici sgradevoli, dolore e prurito persistente, restrizione dei movimenti in particolare quando sono coinvolte le articolazioni ed una sensibile riduzione della qualità di vita [13-15].

In Italia, le risorse assorbite dalla gestione delle HAI impattano per lo 0,8% sul PIL, generando una spesa sanitaria aggiuntiva di circa 1 miliardo di euro [8]. Il costo, prevalentemente associato all’incremento dei giorni di ospedalizzazione, può variare da € 4.000 per un paziente ricoverato nel dipartimento di Medicina a € 28.000 per un paziente ricoverato in Terapia Intensiva, ovvero l’area ospedaliera con la maggior frequenza di infezioni nosocomiali [8].

L'impatto economico delle SSI è stato valutato in numerosi studi internazionali e il dato che ne emerge descrive un quadro di grande rilevanza, sia per le autorità sanitarie sia per i pazienti e le loro famiglie. Inoltre, da una revisione degli studi effettuati emerge anche un estrema variabilità dei risultati ottenuti, per via dei diversi distretti che ne possono essere interessati (in primis dipendendo dalla branca chirurgica in analisi), delle tipologie di infezione e la loro gravità e dalle diverse
modalità di gestione e prevenzione delle infezioni nei vari contesti nazionali [11,16-18].

Una revisione condotta su studi effettuati negli Stati Uniti ha evidenziato come le SSI rappresentino la tipologia più frequente (insieme alle infezioni urinarie associate a catetere) e più costosa di HAI, con un costo attribuibile per singolo caso pari a $ 34.670 verso una media pari a $ 25.900 [3].

Sempre negli Stati Uniti, uno studio condotto su un totale di 327.618 pazienti ospedalizzati per chirurgia elettiva, ha evidenziato come circa un paziente su 10 sviluppi infezione presentando esiti clinici significativamente peggiori, mortalità più elevata (0,8% vs 0,3%; p <0.01) e un costo totale di assistenza sanitaria più elevato, in parte giustificabile dall’aumento delle visite al pronto soccorso (10,9% vs. 3,3%), dalle riammissioni in ospedale (11,3% vs 2,1%) e dalla durata della degenza. Il costo totale medio è stato di $ 8.417 in più rispetto ai pazienti senza infezione ($ 29.229 vs $ 20.812) (p <0.01) [19].

In particolare, Schweizer e coll. [20] hanno evidenziato come, a fronte di un costo relativo di 1,43 volte più elevato in pazienti con SSI rispetto a quelli senza SSI (pari ad una differenza di $ 11.876), le infezioni profonde erano associate ad un costo di 1,93 volte più elevato (25.721 aggiuntivi) e quelle superficiali ad un costo di 1,25 volte superiore (differenza aggiuntiva pari a $ 7.003). In aggiunta, il costo medio più grande imputabile a SSI, pari a $ 23.755, si riscontrava tra i pazienti che avevano subito interventi di neurochirurgia e, a seguire, quelli che erano stati sottoposti a chirurgia ortopedica, chirurgia generale, vascolare e urologica.

Tra le evidenze riscontrabili in letteratura per il contesto Europeo, uno studio eseguito nel Regno Unito tra aprile 2010 e marzo 2012, ha analizzato 14.300 procedure chirurgiche legate a SSI e ha mostrato una durata media di degenza di 10 giorni (95% intervallo di confidenza: 7-13 giorni), pari a circa il doppio di quello dei pazienti senza infezione. L’ospedalizzazione con il maggior tempo di degenza è stata riscontrata negli interventi chirurgici del tratto gastrointestinale, raggiungendo 29 giorni di degenza. Il costo aggiuntivo medio attribuibile a SSI è stato $ 5.239 (95% CI: 4.622-6.719), per un totale di $ 249.424 [21].

Dati riferibili alla Francia indicano che i pazienti che sperimentano una SSI hanno un rischio di mortalità da quattro a quindici volte superiore ed una durata di degenza ospedaliera di tre volte più lunga, per un costo annuo totale di € 57.892.715 [22,23], mentre, in Germania il costo aggiuntivo per SSI, stimato da Arefian e colleghi [24], varia tra € 7.525 e € 16.037.

Valutando contesti diversi da Stati Uniti ed Europa, una revisione condotta in Australia da Coleman e coll, basata su 21.000 casi annui di SSI registrati e un corrispondente numero di 53.536 giornate di degenza ospedaliera, ha evidenziato come il costo complessivo (> 53 milioni AU$), sia ascrivibile per il 31% alla degenza ospedaliera, per il 14% all’assistenza sanitaria post-dimissione; e per il rimanente 55% alla perdita di produttività del paziente (20%) ed all’attività dei caregiver (35%) [26].

L’argomento è stato affrontato anche dal Canadian Patient Safety Institute [27] che, sulla base di una revisione sistematica ha riscontrato un’ampia variabilità del costo di un SSI, con un valore totale di 24,4 milioni di USD relativo a 799.513 dimissioni chirurgiche, associato principalmente a procedure del comparto addominale, urologico, ginecologico e muscoloscheletrico.

Infine, oltre al problema intrinseco di comportare costi aggiuntivi, le SSI spesso aggravano la gestione dei pazienti rendendone l’impatto economico non coerente con i valori rimborsati dagli enti pagatori. Ad esempio, in Germania il valore rimborsato è pari a $ 36.962
EUROPEAN JOURNAL OF PUBLIC HEALTH

QIJPH 2017, Volume 6, Number 8

ITALIAN JOURNAL OF PUBLIC HEALTH

CAPITOLO 2

(€ 27.107), ed è stato stimato che l’insorgenza di SSI induca una perdita finanziaria per l’ospedale pari a $ 12.482 (€ 9.154) per paziente, comportando dei costi non coperti dalla tariffa di rimborso prevista [34].

Poco considerati negli studi disponibili sono anche i costi a carico dei pazienti e della società nel suo complesso per la perdita di reddito o di capacità lavorativa associata a prolungata permanenza in ospedale e successiva morbidità.

In ultimo, si si considera che vi sono ulteriori aspetti economici che vengono trascurati, quali il costo/opportunità di tenere occupati dei letti in reparto oltre la normale necessità, la cancellazione di ricoveri per altri pazienti ed i costi di riammissione dei pazienti con SSI, è intuitivo che quanto emerge dagli studi indicati e descritti in precedenza rappresenta solo la punta dell’iceberg del reale impatto delle SSI.

Qualità della vita

L’impatto sulla qualità di vita è un aspetto che spesso non è debitamente preso in considerazione ma che contribuisce, insieme alla mortalità, la morbidità ed i costi, a rendere ancora più rilevante il carico di malattia delle SSI [11,35-38]. I pazienti con SSI infatti riportano una Qualità di Vita Associata allo Stato di Salute (Health-Related Quality of Life (HRQoL)) ridotta rispetto ai soggetti senza infezione [39] poiché possono sperimentare dolore, senso di insicurezza ed isolamento per molti mesi o addirittura anni [40].

Una recente revisione sistematica della letteratura ha preso in considerazione 28 studi che riportavano, con varie metodologie, i valori di utilità associati alle SSI o, più precisamente, la disutilità conseguente ed associata allo sviluppo di SSI [41].

I valori di disutilità riportati dalla revisione variano tra 0,04 e 0,48, con 19 studi sui 28 totali considerati che riportavano valori compresi tra 0,1 e 0,3. Considerando la componente temporale a cui i valori di disutilità possono riferirsi, negli studi che hanno rilevato i valori a livello di paziente, questi variavano tra 0,05 (7 giorni postoperatorio) e 0,124 (1 anno postoperatorio). Ai fini di una mera esemplificazione relativamente al significato di questi valori, basti pensare che una riduzione tra 0,1 e 0,3 nei valori di utilità riferibili alla popolazione generale descrive situazioni patologiche che comprendono malattie come la depressione maggiore, la beta talassemia, schizofrenia e carcinoma epatocellulare per citarne alcune [42].

Da tutto ciò si evince come le SSI rappresentino una importante fonte di disagio per i pazienti che ne sono colpiti e quanto sia necessario considerare questi aspetti nella valutazione complessiva delle SSI e delle problematiche associabili alle procedure chirurgiche.

Analogamente a quanto già riscontrato ed evidenziato per i costi, anche nel caso degli aspetti di qualità di vita è riscontrabile una grande variabilità ascrivibile all’eterogeneità delle condizioni patologiche e ai vari gradi di gravità dell’infezione (SSI superficiali, profonde e organo/spazio) [11,16-18,43-44]; pertanto rimane difficile identificare una singola e affidabile stima della disutilità delle SSI e si rende necessario esplicitare tali valori caso per caso.

Un altro aspetto importante da considerare è la verosimile sottostima del reale fenomeno SSI poiché in genere, i dati epidemiologici e la conseguente stima di morbidità, mortalità e costi si basa prevalentemente su dati che considerano le sole SSI intraospedaliere benché vi siano anche costi associabili al trattamento delle SSI nella primary care e che maturano in ambito extrospedaliario.

Aspetti economici della prevenzione delle SSI

Se da un lato il quadro delineato da quanto sopra descritto rappresenta una situazione preoccupante, dall’altra parte va considerato che gran parte delle SSI e dei costi ad esse associati sono prevenibili e quindi evitabili. Vi sono infatti stime che quantificano fino al 65% la quota di SSI prevenibile [45].

La prevenzione, che ha il fine ultimo di ridurre al minimo il numero dei pazienti interessati dalle infezioni ospedaliere e di abbattere il relativo costo a carico del SSN, costituisce un elemento fondamentale.

I dati emergenti dalla letteratura mondiale dimostrano che è possibile, soprattutto attraverso scrupolose misure precauzionali, prevenire le infezioni, intervenendo sulla qualità assistenziale del sistema sanitario.

Tra le strategie di prevenzione per le SSI, la sorveglianza è sicuramente l’intervento più
incisivo, tuttavia anche il controllo, il lavaggio delle mani, nonché il controllo, il lavaggio delle mani, nonché il rispetto di taluni criteri architettonici da soddisfare sia nella costruzione di nuove strutture ospedaliere, sia nella ristrutturazione di quelle già esistenti, per ridurre la contaminazione e facilitare la disinfezione, costituiscono aspetti importanti [46].

Infatti, le misure di prevenzione delle infezioni storicamente si sono concentrate sull’asepsi dei professionisti sanitari e dell’ambiente [47].

Esiste però evidenza del fatto che la cute stessa del paziente è la fonte di patogeni responsabili per la maggior parte delle SSI [48-50], poiché ogni volta che l’integrità della cute è alterata, i pazienti sono a rischio di contaminazione da parte della loro stessa flora batterica cutanea [51].

Poiché batteri, tipicamente cutanei come gli stafilococchi sono una causa importante di SSI, anche in soggetti sottoposti a procedure contaminate come la chirurgia colorettale è imperativo che l’antisepsi cutanea sia ottimizzata prima della chirurgia.

Ulteriori pratiche evidence-based semplici ma essenziali, messe in atto prima e durante la procedura chirurgica possono ridurre significativamente i tassi di SSI e, così facendo, migliorare la safety del paziente, liberare letti in reparto, ridurre le riammissioni e permettere al SSN di risparmiare un sostanziale uso di risorse e ridurre i costi.

A riguardo dei sistemi di sorveglianza, esiste prova che i centri per i quali siano disponibili specifici dati epidemiologici sulle SSI abbiano una maggiore capacità di controllo delle infezioni e siano maggiormente inclini e capaci di indurre anche piccole modifiche nella pratica chirurgica quotidiana utili alla prevenzione delle infezioni con conseguente contenimento dei costi associati al controllo e alla gestione delle SSI. Queste operazioni possono essere a costo zero ma esiste evidenza anche del ritorno positivo del cosiddetto approccio ‘spend to save’, ovvero l’investimento nei migliori prodotti e nelle pratiche più efficaci con la miglior evidenza, il cui costo addizionale è più che compensato dai benefici.

Evidenze riferibili a Francia e Olanda indicano che i tassi di SSI possono essere ridotti di più del 50% dopo 5-9 anni [52].

Relativamente al contesto italiano, come evidenziato dall’Italian national surgical site infection surveillance programme [53] a fronte di un piano di rilevazione e reporting delle HAI, si è verificata una rapida riduzione dell’incidenza delle SSI nell’arco di 3 anni, con una riduzione dei tassi di SSI pari al 29% per gli ospedali che vi hanno partecipato per più di 2 anni.

Gli autori stimano che applicando questi tassi di riduzione a tutte le procedure chirurgiche effettuate in Italia, potrebbero essere evitate circa 14.000 SSI per anno. Questo porterebbe potenzialmente ad un risparmio di 25.000 giornate di degenza per anno, evitando sofferenze ai pazienti e risultando in un risparmio economico importante. Basandosi infatti su un costo medio per evento pari a € 13.000, il possibile risparmio dopo 3 anni oscillerebbe tra i 50 e i 175 milioni di euro [53].

In aggiunta, una riduzione delle SSI comporterebbe anche una riduzione nei contenziosi legali e dei relativi costi.

Il costo del contenzioso per le infezioni ospedaliere è infatti pari a circa il 4% del costo totale dei sinistri nella sanità pubblica. Un’indagine condotta da Marsh ha rilevato che il costo medio per sinistro da infezioni ospedaliere è di circa 50.000 euro, a cui si aggiungono i costi sociali legati al prolungamento della degenza [54].

Più della metà dei casi registrati nello studio (56,2%) sono riferibili a prestazioni erogate nell’area chirurgica, dato questo che porta a ipotizzare, come principale causa, una carenza nell’utilizzo delle precauzioni standard nell’assistenza dei pazienti sottoposti ad interventi e quindi maggiormente esposti al rischio di contaminazione da agenti esterni. In particolare, circa il 30% delle infezioni ospedaliere denunciate sono riferibili a Ortopedia e Traumatologia e il 15% a Chirurgia Generale, mentre circa il 7% è rilevato in DEA/Pronto Soccorso. Incrociando i dati Marsh con il recente studio del Centro Nazionale per la Prevenzione e il Controllo delle Malattie correlate all’assistenza, in base al quale si registrano 6,3 infezioni ogni 100 ricoveri, 1 caso ogni 100 infezioni contratte durante la degenza ospedaliera diventa una richiesta di risarcimento danni. Inoltre, 15 sinistri in media all’anno (pari all’8,24% dei casi) sono relativi a casi di decesso per infezione ospedaliera, con un costo medio di circa 113.000 euro (quotidianosanità.it).

In conclusione, le SSI causano gravi
sufferenze e richiedono impiego aggiuntivo di risorse sanitarie ai pazienti, ai loro parenti e alle strutture sanitarie. Tali infezioni inducono un incremento importante dei costi diretti, indiretti e intangibili. Tuttavia è possibile ridurne l’incidenza e prevenire le SSI attraverso l’implementazione di programmi di screening e l’impiego di procedure caratterizzate da comprovata efficacia e costi sostenibili.

L’ampia tipologia dei contesti assistenziali e dei distretti corporei in cui si possono sviluppare le SSI, unitamente ai diversi livelli di gravità con cui si possono manifestare, richiede una attenta e specifica attività di valutazione clinica, epidemiologica ed economica, al fine di informare decisori ed enti pagatori sulle azioni e tecnologie più efficaci e costo-efficaci da applicare.

Bibliografia

[3] Scott RD II. The direct medical costs of healthcare-associated infections in U.S. Hospitals and the benefits of prevention; Division of Healthcare Quality Promotion; National Center for Preparedness, Detection, and Control of Infectious Diseases; CoordinatingCenter for Infectious Diseases; Centers for Disease Control and Prevention; March 2009. Publication CS200891-A.
[4] Shepard J, Ward W, Milstone A, et al. The direct medical costs of surgical site infections in U.S. Hospitals and the benefits of prevention; Division of Healthcare Quality Promotion; National Center for Preparedness, Detection, and Control of Infectious Diseases; CoordinatingCenter for Infectious Diseases; Centers for Disease Control and Prevention; March 2009. Publication CS200891-A.
[18] Schweizer ML, Cullen JJ, Perencevich EN, Vaughan

[52] SNICh - Surveillance and outbreak reports The Italian national surgical site infection surveillance programme and its positive impact, 2009 to 2011 M Marchi1,2, A Pan (apan@regione.emilia-romagna.it)1,2,3, C Gagliotti1, F Morsillo1, M Parenti1, D Resti1,4, M L Moro1, the Sorveglianza Nazionale Infezioni in Chirurgia (SNICh) Study Group, 29 May 2014 http://www.eurosurveillance.org/images/dynamic/EE/V19N21/art20815.pdf)

[53] MARSH Emanuele Patrini LE INFEZIONI OSPEDALIERE ANALISI DEI SINISTRI NELLA SANITA’ PUBBLICA - 2014

La prevenzione delle infezioni del sito chirurgico e le linee guida

M. Pittiruti, G. Scoppettuolo

Nonostante l’implementazione di strategie di controllo delle infezioni e della pratica chirurgica, le SSI rappresentano, nel paziente chirurgico, una causa frequente di morbilità e spesso anche di mortalità. Nell’ambito delle strategie da adottare per la prevenzione delle SSI, la sorveglianza delle SSI, e la comunicazione dei relativi risultati ai chirurghi si è rivelata efficace nel ridurre il rischio di SSI [1,2]. La sorveglianza delle infezioni nosocomiali viene condotta mediante la raccolta dei dati, la loro analisi ed interpretazione, l’implementazione delle azioni preventive e la valutazione degli effetti di tali interventi. La validità di un sistema di sorveglianza è definita da caratteristiche quali semplicità, necessaria per minimizzare i costi e i tempi; flessibilità, per effettuare cambiamenti quando necessario; accettabilità, per incrementare il livello di partecipazione; utilizzo di metodologie standard; sensibilità e specificità dei dati raccolti [3]. Definire la frequenza delle infezioni ospedaliere è dunque importante per chiarire la “dimensione del problema”. Sistemi di sorveglianza e di intervento, accuratamente organizzati, possono ridurre anche notevolmente l’insorgenza di questo fenomeno. Tale considerazione giustifica l’istituzione di sistemi di sorveglianza prima ancora delle ragioni economiche, normative ed organizzative [4]. I sistemi di sorveglianza preposti allo scopo di prevenire e tenere sotto controllo il fenomeno delle infezioni ospedaliere possono essere distinti in tre categorie: - sistemi orientati ai degenti; - sorveglianza basata sui microrganismi; - sistemi rivolti all’ambiente. La sala operatoria rappresenta quindi un ambiente che, se curato nei minimi dettagli, può ridurre fortemente il rischio di infezione; il ruolo dell’ambiente e degli strumenti contribuisce in modo attivo e imponente al rischio infettivo. Da qui nascono gli sforzi, documentati da studi recenti, alla ricerca di nuove tipologie di materiali monouso, così come il miglioramento delle procedure di sterilizzazione, al fine di ridurre sempre di più il rischio di contaminazione [1,5-10].

Considerando anche il peso economico determinato dalle infezioni, oltre quello espresso dall’aumento di morbilità e mortalità, è necessario sottolineare l’importanza di utilizzare tutti gli strumenti disponibili per ridurne l’incidenza, dal momento che anche una sua piccola riduzione può determinare un risparmio considerevole di risorse economiche utilizzabili per altri programmi di prevenzione. La sequenza delle misure da adottare a tale fine deve partire da una corretta asepsi, passando attraverso tecniche chirurgiche corrette, conoscenze adeguate delle procedure di profilassi e prevenzione, associate ad un uso intelligente dei nuovi mezzi messi a disposizione per la prevenzione: fili di sutura imbevuti di soluzioni antibiotiche, stent e cateteri medicati etc.

In tempi recenti, diverse organizzazioni e istituzioni internazionali hanno affrontato in modo analitico e sistematico il problema della prevenzione delle SSI in termini di comportamenti identificati come efficaci sulla base delle migliori evidenze scientifiche disponibili.

Un evento di straordinaria importanza in questo ambito è stata la pubblicazione, il 3 novembre 2016, delle prime linee guida mondiali sulla prevenzione delle SSI, a cura della Organizzazione Mondiale della Sanità (OMS/WHO). Si tratta in assoluto delle prime raccomandazioni propriamente internazionali, la cui necessità è dettata dal fatto che le diverse linee guida precedentemente emesse da istituzioni nazionali contenevano raccomandazioni a volte non conformi o addirittura contrastanti tra loro. Ovviamente, le linee guida WHO sono state progettate e costruite in modo da avere una validità globale per qualunque nazione, tenendo pur conto
della diversità di problemi e di disponibilità di risorse. Le basi di tali linee guida sono ovviamente le evidenze scientifiche disponibili dalla letteratura mondiale, declinate secondo il livello di evidenza e la forza di ciascuna raccomandazione in termine di rilevanza clinica, tenendo conto anche delle implicazioni economiche, della disponibilità di risorse e del ruolo centrale della sicurezza del paziente.

Poiché molti sono i fattori che possono influenzare in modo decisivo il verificarsi di una SSI, le linee guida WHO hanno preso in considerazione numerosi interventi potenzialmente utili o nocivi, in diversi momenti prima, durante e dopo l’intervento chirurgico. E’ ovvio infatti come soltanto una strategia multimodale, in grado di integrare una serie di comportamenti ‘virtuosi’, possa riuscire a minimizzare efficacemente l’incidenza di SSI. Ed è altrettanto ovvio che tali comportamenti debbano essere attuati e condivisi da diverse figure professionali interne ma anche esterne al team chirurgico, cioè: chirurghi, infermieri, strumentisti, tecnici di sala operatoria, anestesisti e ogni altro professionista sanitario coinvolto nella gestione pre, intra e post-operatoria del paziente chirurgico, non esclusi – per determinati aspetti – altri figure cruciali come infettivologi, farmacisti, il personale addetto alla sterilizzazione, fino a coinvolgere chi nel singolo ospedale è proposto al controllo della qualità e del risk management.

La metodologia delle linee guida WHO ha seguito quella che la medesima organizzazione ha pubblicato nel 2014 nel WHO Handbook for guideline development: l’identificazione di alcuni obiettivi primari, la formulazione di una serie di quesiti, la ricerca bibliografica sistematica di evidenze scientifiche per rispondere a tali quesiti, una valutazione della qualità di tali evidenze, la formulazione delle raccomandazioni finali, la preparazione del documento definitivo e la messa a punto di una strategia per la sua massima diffusione. Il documento finale comprende 29 raccomandazioni che coprono 23 argomenti cruciali per la prevenzione delle SSI: per ogni raccomandazione è fornita la qualità di evidenza attualmente disponibile (‘molto bassa’, ‘bassa’, ‘moderata’, ‘alta’) ma anche – cosa altrettanto importante – la forza della raccomandazione stessa, basata su considerazioni che integранo il livello di evidenza con una valutazione del rapporto costo-beneficio e del rapporto tra disponibilità di risorse e fattibilità dell’intervento.

Per una disamina analitica di tutte le raccomandazioni (molte delle quali includono lunghe spiegazioni e ’distinguo’ necessari per completezza e chiarezza del testo), si rimanda al documento originale, disponibile liberamente sul sito web della WHO (http://www.who.int/gpsc/ssi-guidelines/en/). E’ però utile in questa sede riportare brevemente almeno quegli interventi consigliati con la massima forza di raccomandazione:

- decolonizzazione preoperatoria dei pazienti portatori nasali di Staph. Aureus (almeno per quanto riguarda la chirurgia cardiotoracica e ortopedica), mediante applicazione locale perioperatoria di mupirocina al 2% e lavaggio preoperatorio con soluzioni a base di clorexidina;
- somministrazione preoperatoria della profilassi antibiotica (quando indicata dal tipo di intervento), sempre prima del momento della incisione chirurgica, e senza prolungare la profilassi nel periodo postoperatorio;
- astensione da qualunque rasatura preoperatoria di peli/capelli, a meno che non sia assolutamente necessaria e – in questi ultimi casi – l’uso tassativo di ‘clipper’ appositi anzi che di rasoi tradizionali;
- disinfezione preoperatoria della cute del paziente mediante soluzioni alcoliche a base di clorexidina, per qualunque intervento chirurgico;
- disinfezione delle mani dell’operatore sanitario, prima di indossare i guanti sterile, o mediante lavaggio con sapone antissectico appropriato o mediante applicazione di gel idro-alcolico;
- adeguata ossigenazione del paziente sottoposto ad anestesia mediante intubazione endotracheale, sia nella fase intraoperatoria che nell’immediato postoperatorio, con FIO2 pari all’80%.

Altri interventi, anche se contrassegnati con minor forza di raccomandazione, sono ciò nondimeno importanti e utili ai fini della prevenzione delle SSI: il bagno/doccia del paziente con saponi antisettici prima dell’intervento; la preparazione intestinale prima di chirurgia colo-rettale (purché associata ad antibiotici orali ad azione topica); una appropriata nutrizione orale/enterale
preoperatoria nei pazienti malnutriti candidati a chirurgia maggiore; un adeguato controllo peri-operatorio dei livelli glicemici; e così via. Una lettura approfondita del documento aiuta altresì a identificare quali interventi siano non raccomandabili sulla base delle evidenze (come ad esempio l’utilizzo topico intraoperatorio di antibiotici per lavare la cavità peritoneale o la incisione chirurgica).

Si tratta dunque di un documento di grande rilevanza, che entra nel dettaglio di molte specifiche pratiche chirurgiche, identificando con attenzione quali sono i comportamenti e le tecnologie da adottare per ridurre l’incidenza di infezioni chirurgiche. Ma non è l’unico documento cui fare riferimento.

Anche in questo caso, l’autorevolezza e l’affidabilità del documento è legata alla metodologia impiegata. A partire da più di 5000 studi pubblicati tra il 1998 e il 2014, il panel di esperti dei CDC – il cosiddetto HICPAC (Healthcare Infection Control Practices Advisory Committee) – ha selezionato 170 studi di alta qualità, da cui trarre le raccomandazioni finali. Seguendo anche in questo caso il sistema GRADE (Grading of Recommendations, Assessment, Development, and Evaluation), ad ogni raccomandazione è assegnato un livello di forza e di evidenza, con un massimo punteggio ‘1A’ (forte raccomandazione clinica con evidenza di qualità alta o moderata) fino ad un minimo di evidenza definito ‘no recommendation/unresolved SSIue’. Considerando che anche il documento CDC ha attinto alla medesima letteratura scientifica, con metodologia simile, non è sorprendente verificare come le raccomandazioni più rilevanti siano analoghe a quelle del documento WHO. Tra gli interventi raccomandati dal CDC, citiamo alcuni tra i più importanti:

- bagno o doccia del paziente subito prima dell’intervento (o almeno la sera precedente) con saponi antisettici;
- inizio della profilassi antibiotica (quando indicata) in modo che al momento della incisione chirurgica vi siano già livelli circolanti efficaci di antibiotico;
- preparazione della cute con antisettico in soluzione alcolica;
- interruzione immediata della profilassi antibiotica nel postoperatorio, anche qualora siano stati posizionati drenaggi;
- evitare l’utilizzo di antibiotici o antisettici nel campo operatorio o nella ferita chirurgica;
- mantenimento della normoglicemia e della normotermia nel periodo intra e postoperatorio;
- adeguata ossigenazione del paziente in anestesia con intubazione endotracheale, sia durante l’intervento che nell’immediato postoperatorio.

Si tratta dunque anche in questo documento di interventi semplici, a costo minimo, ma provatamente efficaci. Rivedendo le raccomandazioni WHO e CDC ci si chiede quanto di questi comportamenti ‘virtuosi’ siano realmente applicati nei reparti chirurgici degli ospedali italiani. Sarebbe altresì interessante capire quali meccanismi fanno sì che raccomandazioni così certamente efficaci e così evidentemente economiche non vengano comunque applicate. Probabilmente un ruolo importante, accanto alle perenni difficoltà psicologiche insite nell’accettare e applicare un cambio nella abitudine della pratica clinica (quello che oggi si denomina human factor) e accanto alle reali problematiche di logistica legate – per fare un esempio – al cambio dell’antisettico cutaneo di riferimento (si pensi ai problemi connessi all’approvvigionamento, alla distribuzione e all’addestramento all’uso di un prodotto diverso con caratteristiche sostanzialmente diverse), è giocato dalla mancanza di informazione sulla esistenza di tali documenti e/o allo scetticismo sulla loro
applicabilità anche nella nostra realtà.

I tempi sono maturi, probabilmente, per la preparazione e diffusione di un documento di consenso, redatto da un panel di esperti italiani rappresentativo delle diverse figure sanitarie coinvolte nella problematica delle infezioni del sito chirurgico (chirurghi, anestesisti, infermieri, infettivologi, nonché personale ospedaliero preposto al controllo della qualità e alla sicurezza). Il compito di tale documento dovrebbe essere quello di presentare e adattare a livello italiano le evidenze scaturite dai documenti che abbiamo sopra discusso, promuovendo la loro applicazione in tutte le sale operatorie del nostro Paese, ai fini di un miglioramento dell’assistenza, di una maggiore sicurezza del paziente e – non ultimo – anche ai fini di un risparmio di risorse, considerando gli altissimi costi che il nostro sistema sanitario nazionale affronta per il trattamento delle infezioni ospedaliere, delle quali le SSI – come già dimostrato sopra – costituiscono una porzione rilevante.

Bibliografia

LINEE GUIDA GLOBALI
PER LA PREVENZIONE DELLE INFEZIONI
DEL SITO CHIRURGICO
LINEE GUIDA GLOBALI
PER LA PREVENZIONE DELLE INFEZIONI
DEL SITO CHIRURGICO
Pubblicato dall’Organizzazione Mondiale della Sanità nel 2016 con il titolo: *Global Guidelines for the Prevention of Surgical Site Infection*.

© World Health Organization 2016

L’Organizzazione Mondiale della Sanità ha concesso i diritti di traduzione e pubblicazione di una edizione in lingua italiana al Collegio Provinciale IP.AS.VI. di Torino che è l’unico responsabile della qualità e dell’accuratezza della versione italiana. In caso di discrepanze tra la versione in lingua inglese e quella in italiano, la versione originale in inglese è da considerarsi vincolante ed autentica.

Linee guida globali per la prevenzione delle infezioni del sito chirurgico

© Collegio Provinciale IP.AS.VI. di Torino 2017

Traduzione: Laura Delpiano
CONTENUTI

<table>
<thead>
<tr>
<th>Capitolo</th>
<th>Pagina</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ringraziamenti</td>
<td>6</td>
</tr>
<tr>
<td>Abbreviazioni ed acronimi</td>
<td>8</td>
</tr>
<tr>
<td>Glossario</td>
<td>9</td>
</tr>
<tr>
<td>Dichiarazione di interessi</td>
<td>12</td>
</tr>
<tr>
<td>Sintesi</td>
<td>13</td>
</tr>
<tr>
<td>Sintesi degli argomenti principali, dei temi della ricerca e delle raccomandazioni per la prevenzione delle infezioni del sito chirurgico</td>
<td>15</td>
</tr>
<tr>
<td>1. Background</td>
<td>21</td>
</tr>
<tr>
<td>1.1 Target di riferimento</td>
<td>22</td>
</tr>
<tr>
<td>1.2 Scopo delle linee guida</td>
<td>22</td>
</tr>
<tr>
<td>2. Metodi</td>
<td>23</td>
</tr>
<tr>
<td>2.1 Processo di sviluppo delle linee guida OMS</td>
<td>23</td>
</tr>
<tr>
<td>2.2 Identificazione e recupero delle evidenze</td>
<td>24</td>
</tr>
<tr>
<td>3. Tematiche di rilievo nell’approccio della prevenzione delle infezioni del sito chirurgico</td>
<td>27</td>
</tr>
<tr>
<td>3.1 Fattori di rischio infezione del sito chirurgico: epidemiologia e peso globale</td>
<td>27</td>
</tr>
<tr>
<td>3.2 Sorveglianza delle infezioni del sito chirurgico: definizione, metodi e impatto</td>
<td>38</td>
</tr>
<tr>
<td>3.3 Importanza di un ambiente pulito in sala operatoria e della decontaminazione di apparecchiature mediche e strumenti chirurgici</td>
<td>45</td>
</tr>
<tr>
<td>3.3.1 Ambiente</td>
<td>45</td>
</tr>
<tr>
<td>3.3.2 Decontaminazione di apparecchiature mediche e strumenti chirurgici</td>
<td>47</td>
</tr>
<tr>
<td>4. Raccomandazioni evidence-based sulle misure preventive delle infezioni del sito chirurgico</td>
<td>58</td>
</tr>
<tr>
<td>4.1 Bagno pre-opertorio</td>
<td>58</td>
</tr>
<tr>
<td>4.2 Decolonizzazione con pomata alla mupirocina, con o senza lavaggio del corpo con clorexidina gluconato per la prevenzione dell’infezione da Staphilococcus aureus nei portatori nasali che devono sottoporsi a intervento chirurgico</td>
<td>63</td>
</tr>
<tr>
<td>4.3 Screening per la beta-lattamasi a spettro esteso e impatto sulla profilassi antibiotica in chirurgia</td>
<td>69</td>
</tr>
<tr>
<td>4.4</td>
<td>Tempi ottimali per la profilassi antibiotica pre-operatoria</td>
</tr>
<tr>
<td>4.5</td>
<td>Preparazione meccanica dell’intestino e uso degli antibiotici orali</td>
</tr>
<tr>
<td>4.6</td>
<td>Tricotomia</td>
</tr>
<tr>
<td>4.7</td>
<td>Preparazione del sito chirurgico</td>
</tr>
<tr>
<td>4.8</td>
<td>Sigillanti chirurgici anti-microbici</td>
</tr>
<tr>
<td>4.9</td>
<td>Preparazione chirurgica delle mani</td>
</tr>
</tbody>
</table>

Misure pre e/o peri-operatorie

4.10	Supporto nutrizionale avanzato	102
4.11	Interruzione pre-operatoria dei farmaci immunodepressivi	107
4.12	Ossigenazione perioperatoria	110
4.13	Mantenere normale la temperatura corporea (normothermia)	116
4.14	Utilizzo di protocolli di controllo glicemico intensivo nel perioperatorio	120
4.15	Mantenimento di un volume adeguato di sangue in circolo (normovolemia)	126
4.16	Teli e camici	131
4.17	Dispositivi per la protezione delle ferite	136
4.18	Irrigazione delle incisioni	140
4.19	Terapia profilattica a pressione negativa per le ferite	145
4.20	Utilizzo dei guanti chirurgici	149
4.21	Sostituzione dei ferri chirurgici	152
4.22	Rivestimento antibatterico delle suture chirurgiche	153
4.23	Sistemi di ventilazione a flusso laminare nel contesto della sala operatoria	158

Misure post-operatorie

4.24	Prolungamento della profilassi antibiotica in chirurgia	163
4.25	Medicazioni avanzate	171
4.26	Profilassi antibiotica in presenza di drenaggio e timing ottimale per la rimozione del drenaggio dalle ferite	174

5. **Diffusione e implementazione delle linee guida**

6. **Allegati**

6.1	Gruppo Sviluppo Linee-guida	180
6.2	Gruppo Direttivo OMS	182
6.3	Gruppo Esperti Revisione Sistematica	182
6.4	Gruppo esterno Revisione tra pari	184
Appendici on-line: www.who.int/gpsc/SSI-guidelines/en

Appendice 1: Panoramica delle linee guida disponibili riguardanti la prevenzione delle infezioni del sito chirurgico
Appendice 2: Sintesi della revisione sistematica sulla doccia preoperatoria
Appendice 3: Sintesi della revisione sistematica sulla decolonizzazione, tramite lavaggio del corpo con o senza clorexidina gluconato per la prevenzione dell'infezione da Staphylococcus aureus in portatori nasali sottoposti a chirurgia
Appendice 4: Sintesi della revisione sistematica sullo screening per colonizzazione da beta-lattamasi a spettro esteso e sull'impatto sulla profilassi antibiotica chirurgica
Appendice 5: Sintesi della revisione sistematica sul timing ottimale per la profilassi antibiotica preoperatoria
Appendice 6: Sintesi della revisione sistematica sulla preparazione intestinale meccanica e sull'uso di antibiotici per os
Appendice 7: Sintesi della revisione sistematica sulla tricotomia
Appendice 8: Sintesi della revisione sistematica sulla preparazione del sito chirurgico
Appendice 9: Sintesi della revisione sistematica sui sigillanti cutanei antimicrobici
Appendice 10: Sintesi della revisione sistematica sulla preparazione chirurgica delle mani
Appendice 11: Sintesi della revisione sistematica sul supporto nutrizionale avanzato
Appendice 12: Sintesi della revisione sistematica sulla sospensione perioperatoria di agenti immunosoppressivi
Appendice 13: Sintesi della revisione sistematica sull' ossigenazione perioperatoria
Appendice 14: Sintesi della revisione sistematica sul mantenimento della temperatura corporea normale (normotermia)
Appendice 15: Sintesi della revisione sistematica sull'uso di protocolli per il controllo glicemico intensivo in fase perioperatoria
Appendice 16: Sintesi della revisione sistematica sul mantenimento del controllo di un adeguato volume di sangue in circolo (normovolemia)
Appendice 17: Sintesi della revisione sistematica sui teli e camici
Appendice 18: Sintesi della revisione sistematica sui dispositivi di protezione della ferita
Appendice 19: Sintesi della revisione sistematica sull’ irrigazione dell’incisione
Appendice 20: Sintesi della revisione sistematica sulla terapia a pressione negativa
Appendice 21: Sintesi della revisione sistematica sull’uso dei guanti chirurgici
Appendice 22: Sintesi della revisione sistematica sulla sostituzione degli strumenti chirurgici
Appendice 23: Sintesi della revisione sistematica sulle sutture rivestite con antimicrobici
Appendice 24: Sintesi della revisione sistematica sui sistemi di ventilazione a flusso d’aria laminare nel contesto dell’areazione della sala operatoria
Appendice 25: Sintesi della revisione sistematica sul prolungamento della profilassi antibiotica in chirurgia
Appendice 26: Sintesi della revisione sistematica sulle medicazioni avanzate
Appendice 27: Sintesi della revisione sistematica sulla profilassi antimicrobica in presenza di drenaggio e timing ottimale per la rimozione del drenaggio delle ferite

RINGRAZIAMENTI
Il Dipartimento Prestazioni di Servizi e Sicurezza dell’Organizzazione Mondiale della Sanità (OMS) riconosce con gratitudine i contributi che molti singoli e organizzazioni hanno reso allo sviluppo di queste linee-guida.

Coordinamento generale e stesura delle linee-guida
Benedetta Allegranzi (Dipartimento Prestazioni di Servizi e Sicurezza, OMS) ha coordinato e diretto lo sviluppo e la stesura delle linee-guida.

Peter Bischoff (Charité-University Medicine Berlin, Germany), Zeynep Kubilay (Dipartimento Prestazioni di Servizi e Sicurezza, OMS), Stijn de Jonge (Università di Amsterdam, Olanda) e Bassim Zayed (Dipartimento Prestazioni di Servizi e Sicurezza, OMS) hanno contribuito a coordinare lo sviluppo e la stesura delle linee-guida.

Mohamed Abbas (Università di Ginevra, Svizzera), Nizam Damani (Southern Health and Social Service Trust, UK) e Joost Hopman (Radboud University Medical Center Nijmegen, Olanda) hanno contribuito alla stesura di capitoli specifici.

Rosemary Sudan ha fornito assistenza editoriale specializzata.

Thomas Allen e Jose Luis Garnica Carreno (Library and Information Networks for Knowledge, OMS) hanno collaborato alle ricerche di revisione sistematica. Susan Norris (Guidelines Review Committee Secretariat, WHO) hanno condotto lo sviluppo di questo documento.

Comitato permanente OMS per le linee-guida.
Hanno fatto parte del Comitato Permanente OMS:
Dipartimento pandemie e malattie epidemiche: Sergey Eremin.
Ufficio Regionale per le Americhe: Valeska Stempliuk.

Gruppo OMS di sviluppo
Presidente del Gruppo è stato Joseph S Solomkin (University of Cincinnati College of Medicine/OASIS Global, USA).
Il metodologo GRADE è stato Matthias Egger (Università di Berna, Svizzera).
Hanno fatto parte del Gruppo di Sviluppo i seguenti esperti: Hanan H Balkhy (King Saud Bin Abdulaziz University for Health Sciences, Kingdom of Saudi Arabia); Marja A Boermeester (Università di Amsterdam, Olanda); Nizam Damani (Southern Health and Social Service Trust, UK); E Patchen Dellinger (University of Washington, USA); Mazen S Ferwana (King Saud Bin Abdulaziz University for Health Sciences, Kingdom of Saudi Arabia); Petra Gastmeier (Istituto di Igieni e Medicina Ambientale, Charité-University Medicine Berlino, Germania); Xavier Guirao (Parc Taulí Hospital Universitario, Spagna); Nordiah Jalil (Universiti Kebangsaan Malaysia Medical Centre, Malesia); Robinah Kaitiritimba (Uganda National Health Consumers’ Organization, Uganda); Regina Kamoga (Community Health and Information Network, Uganda); Claire Kilpatrick (Imperial College, London CIPM, S3 Global, UK); Shaheen Mehtar (Stellenbosch University and Infection Control Africa Network, Republic of South Africa); Babacar Ndoye (Infection Control Africa Network Board, Senegal); Peter Nthumba (AIC Kijabe Hospital, Kenya); Leonardo Pagani (Ospedale Centrale di Bolzano, Italia e Annecy-Genevois Hospital Centre, France); Didier Pittet (University of Geneva Hospitals, Svizzera); Jianan Ren (Nanjing University, People’s Republic of China); Joseph S Solomkin (University of Cincinnati/OASIS Global, USA); Akeau Unahalekhaka (Chiang Mai University, Thailand); Andreas F Widmer (Università di Basilea, Svizzera).

Membri del Gruppo Esperti Revisione Sistematica
Hanno fatto parte del Gruppo Esperti Revisione sistematica (i nomi dei leader sono sottolineati): Jasper J Atema, Marja A Boermeester, Quirine Boldingh, Sarah Gans, Stijn de Jonge, Fleur de Vries, e Elon D Wallert (University of Amsterdam, the Netherlands); Stacey M Gomez (OASIS Global, USA); e Joseph S. Solomkin (University of Cincinnati College of Medicine/OASIS Global, USA).
La Linea Guida Globale per la prevenzione delle infezioni del sito chirurgico è stata elaborata da una serie di esperti e gruppi di revisione paritaria. Tra i membri della Linea Guida ci sono Jan Kluytmans e Miranda van Rijen (Amphia Hospital Breda, Olanda); Jianan Ren e Yuwen Wu (Nanjing University, People’s Republic of China); Xavier Guirao e Sandra Pequeno (Parc Taulí Hospital Universitari, and Centre Cochrane Iberoaméricà de l’Hospital de la Santa Creu i Sant Pau, Spagna); Petra Gastmeier e Peter Bischoff (Institute of Hygiene and Environmental Medicine, Charité-University Medicine Berlin, Germany); Didier Pittet e Caroline Landelle (University of Geneva Hospitals, Svizzera); Nizam Damani (Southern Health and Social Service Trust, UK); Benedetta Allegranzi, Zeynep Kubilay e Bassim Zayed (Dipartimento Prestazioni di Servizi e Sicurezza, OMS).

Gruppo esterno revisione paritaria

Hanno partecipato in veste di revisori paritari delle bozze dei documenti delle linee guida i seguenti esperti: Emmanuel Ameh (Ahmadu Bello University, Nigeria); Kamal Itani (VA Boston Healthcare System & Boston University School of Medicine, USA); Fernando Otaiza (Infection Prevention and Control Unit, Ministry of Health, Chile); Val Robertson (University of Zimbabwe, Zimbabwe); Ilker Uçkay (University of Geneva Hospitals, Svizzera).

Ringraziamenti per il supporto economico

Il finanziamento per lo sviluppo di queste linee-guida proviene prevalentemente dall’OMS, con il contributo del Fondo Fleming del governo del Regno Unito. Tuttavia, i punti di vista espressi nel documento non necessariamente rispecchiano le politiche ufficiali del governo del Regno Unito. Anche il governo svizzero e OASIS Global (USA) hanno offerto un supporto economico essenziale. Le revisioni sistematiche effettuate dai gruppi di esperti esterni sono state gratuite e offerte come contributo in natura da parte delle seguenti istituzioni: Amphia Hospital Breda (Olanda); Università di Amsterdam (Olanda); Università di Berlino (Germania); Università di Cincinnati (USA); Corporacifi Sanitaria del Parc Taulí, University Hospital (Spagna); Ospedale di Jinling E Scuola di Medicina dell’Università di Nanjing (Repubblica Popolare Cinese).

Contributi fotografici

Per gentile concessione di Didier Pittet, MD (Università degli Ospedali di Ginevra, Svizzera); Per gentile concessione di Juliana Cusack (Patrick Okao, MD, Surgeon at Butaro District Hospital, Rwanda and James Cusack, MD, Visiting Surgeon from Massachusetts General Hospital e Harvard Medical School, Boston, MA, USA).
<table>
<thead>
<tr>
<th>ABBREVIAZIONI ED ACRONIMI</th>
<th>SIGNIFICATO</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABHR</td>
<td>Alcohol-based hand rub - Frizione alcolica delle mani</td>
</tr>
<tr>
<td>AMR</td>
<td>Antimicrobial resistance - Resistenza antimicrobica</td>
</tr>
<tr>
<td>ASHP</td>
<td>American Society of Health-System Pharmacists - Società Americana dei Farmacisti del Sistema Sanitario</td>
</tr>
<tr>
<td>CDC</td>
<td>Centers for Disease Control and Prevention - Centri per il controllo e la Prevenzione delle malattie</td>
</tr>
<tr>
<td>CHG</td>
<td>Chlorhexidine gluconate - Clorexidina Gluconato</td>
</tr>
<tr>
<td>CI</td>
<td>Confidence interval - Intervallo di confidenza</td>
</tr>
<tr>
<td>ECDC</td>
<td>European Centre for Disease Prevention and Control - Centro Europeo per la prevenzione e il controllo delle malattie</td>
</tr>
<tr>
<td>ESBL</td>
<td>Extended spectrum beta-lactamase - Beta lattamasi a spettro esteso</td>
</tr>
<tr>
<td>FIO2</td>
<td>Fraction of inspired oxygen - Frazione inspirata di O2</td>
</tr>
<tr>
<td>GDF</td>
<td>Goal-directed fluid therapy - Ottimizzazione emodinamica</td>
</tr>
<tr>
<td>GDG</td>
<td>Guidelines Development Group - Gruppo sviluppo linee guida</td>
</tr>
<tr>
<td>GRADE</td>
<td>Grading of Recommendations Assessment, Development and Evaluation - Grading delle raccomandazioni di valutazione, sviluppo e valutazione</td>
</tr>
<tr>
<td>HAI</td>
<td>Health care-associated infection - ICA, Infezioni Correlate all'Assistenza</td>
</tr>
<tr>
<td>IDSA</td>
<td>Infectious Diseases Society of America - Società Americana Malattie Infettive</td>
</tr>
<tr>
<td>IPC</td>
<td>Infection prevention and control - Prevenzione e controllo delle infezioni</td>
</tr>
<tr>
<td>LMICs</td>
<td>Low- and middle-income countries - Paesi a reddito medio-basso</td>
</tr>
<tr>
<td>MBP</td>
<td>Mechanical bowel preparation - Preparazione meccanica dell'intestino</td>
</tr>
<tr>
<td>MRSA</td>
<td>Methicillin-resistant Staphylococcus aureus - Staphilococco aureo meticilinno resistente</td>
</tr>
<tr>
<td>MSSA</td>
<td>Methicillin-susceptible Staphylococcus aureus - Staphilococco aureo meticilinno sensibile</td>
</tr>
<tr>
<td>MTX</td>
<td>Methotrexate - Methotrextato</td>
</tr>
<tr>
<td>NHSN</td>
<td>National Healthcare Safety Network - Rete Nazionale Sicurezza Sanitaria</td>
</tr>
<tr>
<td>NICE</td>
<td>National Institute for Health and Care Excellence - Istituto Nazionale per la salute e l'eccellenza clinica</td>
</tr>
<tr>
<td>NNIS</td>
<td>National Nosocomial Infections Surveillance System - Sistema nazionale per la sorveglianza delle infezioni ospedaliere</td>
</tr>
</tbody>
</table>

ABBREVIATURES AND ACRONYMS

<table>
<thead>
<tr>
<th>ABBREVIATION</th>
<th>SIGNIFICANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABHR</td>
<td>Alcohol-based hand rub - Frizione alcolica delle mani</td>
</tr>
<tr>
<td>AMR</td>
<td>Antimicrobial resistance - Resistenza antimicrobica</td>
</tr>
<tr>
<td>ASHP</td>
<td>American Society of Health-System Pharmacists - Società Americana dei Farmacisti del Sistema Sanitario</td>
</tr>
<tr>
<td>CDC</td>
<td>Centers for Disease Control and Prevention - Centri per il controllo e la Prevenzione delle malattie</td>
</tr>
<tr>
<td>CHG</td>
<td>Chlorhexidine gluconate - Clorexidina Gluconato</td>
</tr>
<tr>
<td>CI</td>
<td>Confidence interval - Intervallo di confidenza</td>
</tr>
<tr>
<td>ECDC</td>
<td>European Centre for Disease Prevention and Control - Centro Europeo per la prevenzione e il controllo delle malattie</td>
</tr>
<tr>
<td>ESBL</td>
<td>Extended spectrum beta-lactamase - Beta lattamasi a spettro esteso</td>
</tr>
<tr>
<td>FIO2</td>
<td>Fraction of inspired oxygen - Frazione inspirata di O2</td>
</tr>
<tr>
<td>GDF</td>
<td>Goal-directed fluid therapy - Ottimizzazione emodinamica</td>
</tr>
<tr>
<td>GDG</td>
<td>Guidelines Development Group - Gruppo sviluppo linee guida</td>
</tr>
<tr>
<td>GRADE</td>
<td>Grading of Recommendations Assessment, Development and Evaluation - Grading delle raccomandazioni di valutazione, sviluppo e valutazione</td>
</tr>
<tr>
<td>HAI</td>
<td>Health care-associated infection - ICA, Infezioni Correlate all'Assistenza</td>
</tr>
<tr>
<td>IDSA</td>
<td>Infectious Diseases Society of America - Società Americana Malattie Infettive</td>
</tr>
<tr>
<td>IPC</td>
<td>Infection prevention and control - Prevenzione e controllo delle infezioni</td>
</tr>
<tr>
<td>LMICs</td>
<td>Low- and middle-income countries - Paesi a reddito medio-basso</td>
</tr>
<tr>
<td>MBP</td>
<td>Mechanical bowel preparation - Preparazione meccanica dell'intestino</td>
</tr>
<tr>
<td>MRSA</td>
<td>Methicillin-resistant Staphylococcus aureus - Staphilococco aureo meticilinno resistente</td>
</tr>
<tr>
<td>MSSA</td>
<td>Methicillin-susceptible Staphylococcus aureus - Staphilococco aureo meticilinno sensibile</td>
</tr>
<tr>
<td>MTX</td>
<td>Methotrexate - Methotrextato</td>
</tr>
<tr>
<td>NHSN</td>
<td>National Healthcare Safety Network - Rete Nazionale Sicurezza Sanitaria</td>
</tr>
<tr>
<td>NICE</td>
<td>National Institute for Health and Care Excellence - Istituto Nazionale per la salute e l'eccellenza clinica</td>
</tr>
<tr>
<td>NNIS</td>
<td>National Nosocomial Infections Surveillance System - Sistema nazionale per la sorveglianza delle infezioni ospedaliere</td>
</tr>
</tbody>
</table>

ABBREVIATION DEFLATION

<table>
<thead>
<tr>
<th>ABBREVIATION</th>
<th>SIGNIFICANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABHR</td>
<td>Alcohol-based hand rub - Frizione alcolica delle mani</td>
</tr>
<tr>
<td>AMR</td>
<td>Antimicrobial resistance - Resistenza antimicrobica</td>
</tr>
<tr>
<td>ASHP</td>
<td>American Society of Health-System Pharmacists - Società Americana dei Farmacisti del Sistema Sanitario</td>
</tr>
<tr>
<td>CDC</td>
<td>Centers for Disease Control and Prevention - Centri per il controllo e la Prevenzione delle malattie</td>
</tr>
<tr>
<td>CHG</td>
<td>Chlorhexidine gluconate - Clorexidina Gluconato</td>
</tr>
<tr>
<td>CI</td>
<td>Confidence interval - Intervallo di confidenza</td>
</tr>
<tr>
<td>ECDC</td>
<td>European Centre for Disease Prevention and Control - Centro Europeo per la prevenzione e il controllo delle malattie</td>
</tr>
<tr>
<td>ESBL</td>
<td>Extended spectrum beta-lactamase - Beta lattamasi a spettro esteso</td>
</tr>
<tr>
<td>FIO2</td>
<td>Fraction of inspired oxygen - Frazione inspirata di O2</td>
</tr>
<tr>
<td>GDF</td>
<td>Goal-directed fluid therapy - Ottimizzazione emodinamica</td>
</tr>
<tr>
<td>GDG</td>
<td>Guidelines Development Group - Gruppo sviluppo linee guida</td>
</tr>
<tr>
<td>GRADE</td>
<td>Grading of Recommendations Assessment, Development and Evaluation - Grading delle raccomandazioni di valutazione, sviluppo e valutazione</td>
</tr>
<tr>
<td>HAI</td>
<td>Health care-associated infection - ICA, Infezioni Correlate all'Assistenza</td>
</tr>
<tr>
<td>IDSA</td>
<td>Infectious Diseases Society of America - Società Americana Malattie Infettive</td>
</tr>
<tr>
<td>IPC</td>
<td>Infection prevention and control - Prevenzione e controllo delle infezioni</td>
</tr>
<tr>
<td>LMICs</td>
<td>Low- and middle-income countries - Paesi a reddito medio-basso</td>
</tr>
<tr>
<td>MBP</td>
<td>Mechanical bowel preparation - Preparazione meccanica dell'intestino</td>
</tr>
<tr>
<td>MRSA</td>
<td>Methicillin-resistant Staphylococcus aureus - Staphilococco aureo meticilinno resistente</td>
</tr>
<tr>
<td>MSSA</td>
<td>Methicillin-susceptible Staphylococcus aureus - Staphilococco aureo meticilinno sensibile</td>
</tr>
<tr>
<td>MTX</td>
<td>Methotrexate - Methotrextato</td>
</tr>
<tr>
<td>NHSN</td>
<td>National Healthcare Safety Network - Rete Nazionale Sicurezza Sanitaria</td>
</tr>
<tr>
<td>NICE</td>
<td>National Institute for Health and Care Excellence - Istituto Nazionale per la salute e l'eccellenza clinica</td>
</tr>
<tr>
<td>NNIS</td>
<td>National Nosocomial Infections Surveillance System - Sistema nazionale per la sorveglianza delle infezioni ospedaliere</td>
</tr>
</tbody>
</table>
Frizione alcolica per le mani – preparazione a base alcolica destinata ad essere applicata sulle mani per eliminare i microorganismi e/o impedirne temporaneamente la crescita. Tali preparazioni possono contenere uno o più tipi di alcol, altri ingredienti attivi, eccipienti ed idratanti.

Sigillanti cutanei antimicrobici – sigillanti sterili a base di cianoacrilato che formano una pellicola e che vengono comunemente utilizzati come ulteriore preparazione antimicrobica della pelle dopo l’antisepsi e prima dell’incisione. Questi sigillanti non devono essere rimossi per bloccare la migrazione della flora dalla pelle circostante al sito chirurgico e si dissolvono diversi giorni dopo l’intervento.

GRADE (Grading of Recomendations Assessment, Development ad Evaluation) – è un approccio utilizzato per valutare la qualità di una prova, sviluppare e rapportare delle raccomandazioni.

Infezioni correlate all’assistenza – altrimenti dette “nosocomiali” o “infezioni ospedaliere”, sono quelle infezioni che colpiscono il paziente durante il processo dell’assistenza in ospedale o in altra struttura sanitaria, e che non erano presenti o in fase di incubazione al momento del ricovero. Le infezioni correlate all’assistenza possono presentarsi anche dopo le dimissioni. Rappresentano l’evento avverso più frequente durante l’assistenza.

Frizionamento igienico delle mani – trattamento delle mani con prodotti antisettici che riducono la flora batterica transitoria senza necessariamente colpire quella presente sulla cute. Questa preparazione è ad ampio spettro e di lunga durata, non è necessario ripeterla costantemente.

Lavaggio igienico nelle mani – trattamento delle mani con un detergente antisettico e acqua per ridurre la flora batterica transitoria senza necessariamente colpire quella presente sulla cute. È ad ampio spettro ma generalmente è meno efficace ed agisce più lentamente rispetto al frizionamento.

Medicazione interattiva (avanzata) della ferita – Materiali moderni (successivi al 1980) per la medicazione delle ferite, che favoriscono il processo di guarigione attraverso la creazione e il mantenimento di un ambiente locale tiepido e umido sotto la medicazione scelta quando questa viene lasciata in sito per il periodo indicato e sottoposta ad un processo di controllo continuo. Ne sono esempio gli alginati, le membrane semi-permeabili, le schiume, gli idrocolloidi, le idrofibre, le medicazioni non aderenti e combinazioni dei precedenti.

Iodoforo – preparato contenente agenti tensioattivi che agiscono come trasportatori e solubilizzanti dello iodio come un surfattante o il povidone (che genera lo iodopovidone). Il risultato è un materiale idrosolubile che rilascia iodio libero in soluzione. Gli iodofori vengono preparati mescolando lo iodio al solvente; per accelerarne la reazione si può utilizzare il calore.

Preparazione meccanica dell’intestino – si fa riferimento alla somministrazione preoperatoria di sostanze che inducono lo svuotamento dei contenuti intestinali e del colon.

Popolazione pediatrica: infanti, bambini e adolescenti di età solitamente compresa dalla nascita ai 18 anni.
Picco di prevalenza (ricerca): percentuale di individui con una particolare malattia o caratteristica misurata in un particolare momento. N.B: La prevalenza differisce dall’incidenza in quanto comprende tutti i casi, sia nuovi che preesistenti, in una data popolazione in un determinato momento, mentre l’incidenza si limita ai soli nuovi casi.

Sutura primaria: è così definita la chiusura a livello della pelle durante l’intervento originale, indipendentemente dalla presenza di fili, cannule, drenaggi o altri oggetti che estrudono dall’incisione. Questa categoria comprende gli interventi in cui la pelle viene chiusa in qualche modo. Quindi, se una parte qualsiasi dell’incisione viene richiusa a livello della pelle, con qualsiasi mezzo, all’intervento può essere assegnata la definizione di sutura primaria.

Flora batterica residente: microrganismi che risiedono sotto le cellule superficiali dello stratum corneum e che si trovano anche sulla superficie della pelle.

Profilassi antibiotica standard: prevenzione delle complicanze infettive attraverso la somministrazione di un efficace agente antimicrobico prima dell’esposizione alla contaminazione durante l’intervento chirurgico.

Preparazione chirurgica delle mani: lavaggio o frizionamento antisettico effettuato prima dell’intervento dall’équipe chirurgica per eliminare la flora batterica transitoria e ridurre quella residente. Questi antisettici spesso hanno un’attività antimicrobica persistente.

Frizionamento chirurgico delle mani: preparazione delle mani attraverso frizione con una preparazione alcolica senza acqua.

Lavaggio chirurgico/pre-chirurgico: preparazione chirurgica delle mani con acqua e sapone antimicrobico.

Procedura chirurgica: operazione in cui viene effettuata almeno un’incisione (compreso l’approccio laparoscopico) attraverso la pelle o le membrane mucose, oppure una nuova operazione attraverso un’incisione lasciata aperta durante una precedente procedura operatoria. Viene effettuata in sala operatoria.

Infezione del sito chirurgico: viene così indicata anche un’infezione che si presenta entro 30 giorni dopo l’intervento e che interessi la pelle e i tessuti sottocutanei dell’incisione (superficiellic) e/o i tessuti molli profondi (per esempio fascia, muscolo) dell’incisione (profonda) e/o un qualsiasi distretto anatomico (organo/spazio) diverso da quello aperto e manipolato durante l’intervento. (Fonte:: European Centre for Disease Prevention and Control. http://ecdc.europa.eu/en/publications/Publications/Publications/120215_TED_SSI_protocol.pdf , consultato il 16 Agosto 2016).

Mortalità SSI-correlata: decessi direttamente attribuibiliti ad infezione del sito chirurgico. Il numeratore fa riferimento ai pazienti chirurgici per i quali la causa di morte è direttamente attribuibile ad infezioni del sito chirurgico, mentre il denominatore solitamente fa riferimento a tutti i pazienti chirurgici di una popolazione di pazienti.

I tassi di infezione per ogni 100 procedure operatorie vengono calcolati dividendo il numero di infezioni del sito chirurgico per il numero di procedure operatorie specifiche e moltiplicando i risultati per 100. I calcoli possono essere effettuati separatamente per le diverse tipologie di intervento chirurgico e stratificati a seconda dell’indice di rischio.

Strumenti chirurgici: sono strumenti o apparecchiature che servono ad eseguire attività quali tagliare, dissezionare, afferrare, retrarre o suturare il sito chirurgico. La maggior parte degli strumenti sono di acciaio inossidabile.

Ferita chirurgica: ferita creata quando viene fatta un’incisione con un bisturi o altro strumento affilato che viene poi richiusa in sala operatoria con una sutura, graffette, nastro adesivo o colla e che risulta in un riavvicinamento stretto dei lembi di pelle.

Flora batterica transitoria: microrganismi che colonizzano gli strati superficiali della pelle e che vengono facilmente rimossi con il lavaggio/frizionamento di routine delle mani.
Sottopeso: è un termine che descrive una persona il cui peso corporeo è considerato troppo basso per essere salubre. La definizione solitamente fa riferimento a persone con un indice di massa corporea inferiore a 18.5 o un peso del 15-20% al di sotto della norma per gruppo di età e altezza.

Le ferite chirurgiche si dividono in quattro classi:

1. **Pulite**: Interventi chirurgici su ferita non infetta, senza interessamento del tratto respiratorio, gastrointestinale, genito-urinario. Interventi chiusi in prima istanza e, quando necessario, drenati con drenaggi chiusi. Gli interventi conseguenti a traumi non penetranti devono essere inclusi in questa categoria, se soddisfano i criteri precedenti.

2. **Pulite contaminate**: interventi che interessano il tratto respiratorio, gastrointestinale o genitourinario, in condizioni controllate senza contaminazione significativa della ferita. Vengono, in particolare, inclusi in questa categoria gli interventi sul tratto biliare, appendice, vagina e oro-faringe, a condizione che non vi sia alcuna evidenza di infezione e non vi sia stata alcuna interruzione delle tecniche asettiche.

3. **Contaminate**: interventi conseguenti ad un trauma recente, aperto. Interventi che comportano il non rispetto della sepsi (ad esempio massaggio a cuore aperto) o uno spandimento significativo del contenuto gastrointestinale o interventi che interessano un processo infiammatorio acuto, non purulento (ad esempio gangrena secca).

DICHIARAZIONI SUI CONFLITTI DI INTERESSE

In osservanza ai regolamenti dell’OMS, prima di partecipare ad ogni riunione, è stato richiesto a tutti i componenti del Gruppo Sviluppo Linee-guida (GDG) di compilare e trasmettere una dichiarazione sul conflitto di interessi. Lo stesso è stato chiesto anche ai revisori esterni ed ai membri del Gruppo Esperti per la Revisione Sistematica. La segreteria ha quindi controllato e verificato ogni dichiarazione. In caso di potenziale conflitto di interesse, ne sono state presentate le motivazioni al gruppo.

Sono state prese misure per la gestione dei conflitti di interesse dichiarati secondo le Linee guida OMS per la dichiarazione di interessi (Esperti OMS). Quando il conflitto di interessi non è stato considerato sufficientemente significativo da costituire un rischio per il processo di sviluppo delle linee guida o per la loro credibilità, agli esperti è stato semplicemente richiesto di dichiarare apertamente il potenziale conflitto all’inizio delle consultazioni tecniche. I conflitti dichiarati sono stati considerati irrilevanti in tutte le occasioni e non hanno causato esclusioni dal gruppo. Tutti i membri hanno quindi partecipato pienamente alla formulazione delle raccomandazioni e non sono state intraprese ulteriori azioni.

Sono stati dichiarati i seguenti interessi da parte dei componenti del GDG:

Joseph Solomkin, presidente del GDG, è anche amministratore delegato della OASIS Global (USA), un’organizzazione che aveva erogato fondi a parziale finanziamento delle competenze di un consulente OMS arruolato per supportare la fase iniziale del processo di sviluppo delle linee-guida.

Andreas Widmer ha dichiarato di aver ricevuto nel 2014 uno stanziamento di Fr. 200.000 svizzeri dalla Fondazione Nazionale Svizzera per la Scienza per finanziare uno studio sulla profilassi antibiotica.

Peter Nthumba ha dichiarato che la sua partecipazione al workshop sulle ferite chirurgiche del 2014 era stata finanziata da Ethicon Surgical Care (Johnson & Johnson).

Marja A. Boermeester ha dichiarato che la sua partecipazione ad un meeting del 2014 era stata finanziata da Johnson & Johnson e che aveva ottenuto dalla stessa Johnson & Johnson una borsa di studio per la ricerca di € 49.000, su un argomento non correlato a queste linee guida. Aveva inoltre ricevuto finanziamenti o compensi per docenze sulle infezioni del sito chirurgico o come membro di comitati consultivi di: Abbott/Mylan, Acelity, Bard, Baxter, GSK, Ipsen e Johnson & Johnson.

E. Patchen Dellinger ha dichiarato di aver percepito onorari per aver tenuto conferenze sulle infezioni del sito chirurgico. Ha inoltre ricevuto compensi per aver fatto parte di comitati consultivi per: Astellas, Baxter, Cubist, Durata, Merck, Otrho-McNeil, Pfizer, Rib- X, R-Pharm, Targanta, Tetraphase e 3M. i suddetti compensi ed onorari variavano da $ 1000 a $ 5000 ma le attività non erano correlate alle raccomandazioni delle linee guida.

Xavier Guirao ha dichiarato di aver ricevuto compensi personali per circa € 1.000,00 da: Merck, Pfizer, Astra-Zeneca e Novartis. Queste attività non erano correlate alle raccomandazioni delle linee guida.

Oltre a Marja A. Boermeester, Joseph Solomkin e Xavier Guirao, nessun componente del Gruppo Esperti per la revisione sistematica ha dichiarato conflitti di interesse. Un revisore esterno ha dichiarato il seguente interesse, considerato irrilevante dal Consiglio Direttivo OMS: Val Robertson ha dichiarato di aver ricevuto nel 2015 un contributo per la ricerca di $ 3500 dalla Federazione Internazionale per il Controllo delle Infezioni e che attualmente percepisce un compenso mensile di $ 2241 come consulente tecnico del Progetto Prevenzione e Controllo delle Infezioni nello Zimbabwe.
Introduzione

Le infezioni correlate all’assistenza (ICA) sono acquisite dai pazienti mentre ricevono cure e rappresentano l’evento avverso più frequente che colpisce la sicurezza dei pazienti in tutto il mondo.

Un recente lavoro dall’Organizzazione Mondiale della Sanità (OMS) indica che l’infezione del sito chirurgico (SSI) è la tipologia di ICA più studiata nei Paesi a basso e medio reddito, dove interessa fino ad un terzo dei pazienti che hanno subito un intervento chirurgico. Anche se l’incidenza delle SSI nei Paesi ad alto reddito è più bassa, in Europa e negli Stati Uniti d’America (USA) è comunque il secondo tipo di ICA in termini di frequenza.

Nel percorso del paziente attraverso la chirurgia sono stati identificati molti fattori che contribuiscono al rischio di SSI. Pertanto, la prevenzione di queste infezioni è complessa e richiede l’integrazione di una serie di misure preventive prima, durante e dopo la chirurgia. Tuttavia, l’implementazione di queste misure non è standardizzata in tutto il mondo.

Non ci sono linee guida internazionali attualmente disponibili e spesso nelle linee guida nazionali si rilevano incoerenze nell’interpretazione delle evidenze e delle raccomandazioni.

Scopo di queste linee guida è di fornire una gamma completa di raccomandazioni evidence-based per gli interventi da applicare durante i periodi pre, peri e post-operatori per la prevenzione delle SSI, considerando nel contempo aspetti legati alla disponibilità delle risorse, ai valori e alle preferenze.

Anche se le linee guida sono destinate ai pazienti chirurghi di ogni età, alcune raccomandazioni non sono adatte alla popolazione pediatrica per mancanza di evidenze a supporto o per motivi di inapplicabilità e questo è chiaramente indicato.

Destinatari

Il target di riferimento primario per queste linee guida è l’équipe chirurgica, omissa, chirurghi, infermieri, personale tecnico di supporto, anestesisti e qualsiasi altro professionista coinvolto nella chirurgia. Anche i farmacisti e il personale delle unità di sterilizzazione sono per alcuni aspetti interessati a queste linee guida. Le raccomandazioni sono destinate ad essere utilizzate dai responsabili politici, dai dirigenti e dai responsabili della prevenzione e controllo delle infezioni come base per lo sviluppo di protocolli e politiche nazionali e locali e per supportare l’istruzione e la formazione del personale.

Metodi di sviluppo delle linee guida

Le linee guida sono state sviluppate secondo i processi descritti nel manuale OMS Sviluppo delle linee guida, pubblicato nel 2014. In sintesi, il processo ha previsto:

1. l’individuazione degli outcome critici primari e dei temi prioritari e la formulazione di una serie di domande strutturate in formato PICO (Popolazione, Intervento, Confronto, Outcomes);
2. il reperimento delle evidenze attraverso specifiche revisioni sistemiche di ogni argomento con una metodologia concordata standardizzata;
3. la valutazione e la sintesi delle evidenze;
4. la formulazione di raccomandazioni; e
5. la redazione delle linee guida e la pianificazione strategica della loro diffusione e conseguente implementazione.

Lo sviluppo delle linee guida ha visto la formazione di quattro gruppi principali per guidarne il processo: il gruppo Direttivo dell’OMS; il Gruppo di Sviluppo delle linee guida (GDG); il gruppo Esperti per la revisione sistematica e il Gruppo revisione esterna.

Utilizzando l’elenco dei temi prioritari, domande e risultati critici individuati dal Gruppo Direttivo OMS, dal GDG e dal metodologo, in una riunione programmatica convocata dall’OMS nel settembre 2013, il Gruppo di esperti per la revisione sistematica ha condotto 27 revisioni per fornire le evidenze a supporto dello sviluppo delle raccomandazioni; le sintesi sono disponibili come appendici on-line delle linee-guida. Le prove scientifiche sono state sintetizzate utilizzando l’approccio GRADE (Grading of Recommendations Assessment, Development and Evaluation). Tra giugno 2014 e novembre 2015...
L'OMS ha convocato quattro consultazioni tecniche del GDG per formulare e approvare le raccomandazioni sulla base dei profili delle evidenze. Dopo gli incontri, in accordo con il metodologo ed il segretariato del Comitato OMS per la revisione delle linee-guida, cinque raccomandazioni sono state ridiscusse attraverso consultazioni on-line del GDG e leggermente modificate, sulla base o dei commenti dei revisori esterni o dell'emergenza di nuove evidenze.

Le linee guida sono costituite da una sezione principale che comprende un capitolo dedicato ad ogni raccomandazione, diviso in sottosezioni a seconda della loro applicazione nel pre, intra e post-operatorio. Tutto ciò è preceduto da una sezione che tratta altre questioni importanti nell'approccio alla prevenzione delle SSI, che non sono state oggetto di raccomandazioni, ma di cui gli utenti dovrebbero essere pienamente consapevoli. Una sintesi delle principali linee-guida nazionali per la prevenzione SSI è fornita come appendice on-line.

Le Raccomandazioni

Le consultazioni tecniche hanno portato all'adozione di 29 raccomandazioni che coprono 23 tematiche riguardanti la prevenzione delle SSI nel pre, intra e post-peratorio (vedi tabella). Per quattro argomenti, il GDG ha ritenuto che le evidenze disponibili non fossero sufficienti a sviluppare raccomandazioni. Per ogni raccomandazione la qualità delle prove è stata classificata come "molto bassa", "bassa", "moderata" o "alta". Il GDG ha quotato la forza di ogni raccomandazione considerando la qualità delle prove e altri fattori, tra cui l'equilibrio rischio-beneficio, i valori e le preferenze dei soggetti interessati e le implicazioni di risorse nell'intervento. Per garantire che ogni raccomandazione sia correttamente compresa e applicata nella pratica, il GDG - dove ritenuto necessario - ha fornito ulteriori osservazioni. Gli utilizzatori delle linee guida devono fare riferimento a queste osservazioni, nonché alla sintesi delle evidenze fornita in ciascun capitolo.

Le sintesi delle revisioni sistemiche, tra cui le valutazioni del rischio di bias e le tabelle GRADE, sono disponibili integralmente come appendici on-line delle linee guida. Ogni capitolo presenta anche un’agenda per la ricerca identificata dal GDG per ogni argomento.

Le raccomandazioni per la prevenzione delle SSI che devono essere implementate o prese in considerazione nel pre, intra e post-operatorio sono riassunte nella tabella che segue, insieme alle relative domande PICO, la loro forza e le prove di qualità. Nel rispetto delle procedure OMS per lo sviluppo di linee-guida, queste raccomandazioni saranno riviste e aggiornate almeno ogni cinque anni, dopo l'identificazione di nuove evidenze. L'OMS accoglie suggerimenti riguardo ulteriori quesiti da includere nei futuri aggiornamenti.
<table>
<thead>
<tr>
<th>Argomento</th>
<th>Domande della ricerca</th>
<th>Raccomandazioni</th>
<th>Potenza</th>
<th>Qualità dell’evidenza</th>
</tr>
</thead>
<tbody>
<tr>
<td>Misure preoperatorie</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bagno preoperatorio</td>
<td>1. Il bagno preoperatorio con utilizzo di sapone antibatterico è più efficace nel ridurre l’incidenza delle ISC nei pazienti chirurgici rispetto al sapone normale? 2. Il bagno preoperatorio con garze imbevute di clorexidina gluconato (CHG) è più efficace nel ridurre l’incidenza delle ISC rispetto al sapone antibatterico?</td>
<td>E’ buona pratica clinica che il paziente faccia il bagno o la doccia prima dell’intervento chirurgico. Il panel suggerisce che allo scopo si possa utilizzare sia il sapone normale che l’antibatterico Il panel ha deciso di non scrivere una raccomandazione sull’utilizzo di garze imbevute di clorexidina allo scopo di ridurre l’incidenza delle ISC a causa della scarsa qualità dell’evidenza.</td>
<td>Condizionale</td>
<td>Moderata</td>
</tr>
<tr>
<td>Decolonizzazione del naso con meticillina, con o senza lavaggio del corpo con clorexidina gluconato, per la prevenzione delle infezioni da Staphylococcus aureus nei portatori nasali</td>
<td>Le pomate nasali a base di meticillina, combinate o meno con il lavaggio del corpo con saponi alla clorexidina, sono efficaci nel ridurre il numero di infezioni da S. aureus nei portatori nasali che si sottopongono a intervento chirurgico?</td>
<td>Il panel raccomanda che i pazienti che si sottopongono ad interventi cardiotoracici e ortopedici, riconosciuti come portatori nasali di S. aureus siano sottoposti a trattamento preoperatorio con pomata di meticillina al 2%, con o senza lavaggio con CHG. Il panel suggerisce di trattare anche i pazienti che si sottopongono ad altri interventi chirurgici e che sono portatori nasali riconosciuti di S. aureus con pomata di meticillina al 2%, con o senza lavaggio con CHG.</td>
<td>Forte</td>
<td>Moderata</td>
</tr>
<tr>
<td>Screening delle colonizzazioni di ESBL e impatto sulla profilassi antibiotica</td>
<td>1. La prevenzione andrebbe modificata in aree di elevata (>10%) prevalenza di ESBL? 2. La prevenzione andrebbe modificata nei pazienti colonizzati o portatori di ESBL? 3. Prima di un intervento i pazienti devono essere sottoposti a screening per ESBL?</td>
<td>Il panel ha deciso di non formulare alcuna raccomandazione per mancanza di evidenze</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Argomento</td>
<td>Domande della ricerca</td>
<td>Raccomandazioni</td>
<td>Potenza</td>
<td>Qualità dell’evidenza</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---------</td>
<td>------------------------</td>
</tr>
<tr>
<td>Misure preoperatorie</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Timing ottimale della profilassi antibiotica</td>
<td>Come influisce il timing della SAP sul rischio di infezione e qual è il momento migliore?</td>
<td>Il panel raccomanda che la profilassi venga fatta prima dell’incisione chirurgica, quando adeguato (secondo il tipo di intervento)</td>
<td>Forte</td>
<td>Bassa</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Il panel raccomanda che la SAP venga effettuata 120 minuti prima dell’incisione, tenuto conto dell’emivita degli antibiotici.</td>
<td>Forte</td>
<td>Moderata</td>
</tr>
<tr>
<td>Preparazione meccanica dell’intestino e utilizzo di antibiotici orali</td>
<td>La preparazione meccanica dell’intestino, combinata o meno con la somministrazione orale di antibiotici, è efficace nella prevenzione delle SSI nella chirurgia colorettale?</td>
<td>Il panel suggerisce il ricorso alla preparazione intestinale meccanica combinata con la somministrazione orale di antibiotici per i pazienti adulti che si sottopongono a chirurgia colorettale elettiva.</td>
<td>Condizionale</td>
<td>Moderata</td>
</tr>
</tbody>
</table>
| Tricotomia | 1. Influisce sull’incidenza delle SSI?
2. Quale metodo e timing della tricotomia è correlato alla diminuzione delle SSI? | Il panel raccomanda che nei pazienti da sottoporre ad intervento chirurgico NON si asportino i peli, oppure, se assolutamente necessario, lo si faccia con il tricotomo. La rasatura è sempre fortemente sconsigliata. | Forte | Moderata |
<p>| Preparazione del sito chirurgico | Si devono utilizzare soluzioni antisettiche alcoliche o acquose nella preparazione della pelle del paziente chirurgico e, più specificamente, si devono usare soluzioni a base di Clorexidina Gluconato o Iodopovidone? | Per la preparazione della pelle nel paziente da sottoporre ad intervento chirurgico il panel raccomanda l’utilizzo di soluzioni antisettiche a base alcolica con Clorexidina Gluconato. | Forte | Da bassa a moderata |</p>
<table>
<thead>
<tr>
<th>Argomento</th>
<th>Domande della ricerca</th>
<th>Raccomandazioni</th>
<th>Potenza</th>
<th>Qualità dell’evidenza</th>
</tr>
</thead>
<tbody>
<tr>
<td>Misure preoperatorie</td>
<td>Si devono usare sigillanti antimicrobici (oltre alla preparazione standard della pelle del sito chirurgico) per la prevenzione delle SSI nel paziente chirurgico?</td>
<td>Il panel suggerisce che al fine di ridurre il rischio di SSI non si debbano utilizzare sigillanti antimicrobici dopo la preparazione chirurgica della pelle</td>
<td>Condizionale</td>
<td>Molto bassa</td>
</tr>
</tbody>
</table>
| **Preparazione chirurgica delle mani** | 1. Qual è il tipo di prodotto più efficace per la preparazione chirurgica delle mani al fine di prevenire le SSI?
2. Quali sono la tecnica più efficace e la durata ideale per la preparazione chirurgica delle mani? | Il panel raccomanda che la preparazione chirurgica delle mani sia eseguita con lavaggio con acqua e un sapone antimicrobico adatto usando un prodotto per frizione a base alcolica prima di indossare i guanti sterili. | Forte | Moderata |
<p>| Supporto nutrizionale | Per la prevenzione delle SSI si deve utilizzare il supporto nutrizionale per i pazienti chirurgici? | Al fine di ridurre il rischio di SSI, il panel suggerisce di prendere in considerazione la somministrazione orale o enterale di formule multinutrienti per i pazienti sottopeso che si sottopongono a interventi di chirurgia maggiore. | Condizionale | Molto bassa |
| Sospensione perioperatoria degli agenti immunosoppressori | Gli immunosoppressori devono essere sospesi nel perioperatorio e questo influenza sulle SSI? | Al fine di ridurre il rischio di SSI, il panel suggerisce di non sospendere i farmaci immunosoppressori prima dell’intervento. | Condizionale | Molto bassa |
| Ossigenazione perioperatoria | Per ridurre il rischio di SSI quanto è efficace l’uso perioperatorio di una frazione inspirata di ossigeno aumentato? | Il panel raccomanda che per ridurre il rischio di SSI i pazienti adulti sottoposti ad anestesia generale con intubazione endotracheale ricevano una frazione di ossigeno inspirato all’80% durante l’intervento e, se possibile, anche nelle 2-6 ore successive. | Forte | Moderata |</p>
<table>
<thead>
<tr>
<th>Argomento</th>
<th>Domande della ricerca</th>
<th>Raccomandazioni</th>
<th>Potenza</th>
<th>Qualità dell’evidenza</th>
</tr>
</thead>
<tbody>
<tr>
<td>Misure preoperatorie</td>
<td>Per la prevenzione di SSI nei pazienti chirurgici si dovrebbe ricorrere al riscaldamento sistematico del corpo vs. nessun riscaldamento?</td>
<td>Al fine di ridurre le SSI, il panel suggerisce l’utilizzo di dispositivi riscaldanti in sala operatoria e durante le procedure operatorie per riscaldare il corpo del paziente.</td>
<td>Condizionale</td>
<td>Moderata</td>
</tr>
</tbody>
</table>
| Uso di protocolli per il controllo intensivo della glicemia nel perioperatorio | 1. I protocolli miranti a mantenere i livelli ottimali di glucosio nei sangue riducono il rischio di SSI?
2. Quali sono i livelli glicemici perioperatori ottimali per i pazienti diabetici e non diabetici? | Per ridurre il rischio di SSI, il panel suggerisce il ricorso a protocolli per il controllo intensivo della glicemia perioperatoria nei pazienti adulti diabetici e non, sottoposti a procedure chirurgiche.
Il panel ha deciso di non formulare una raccomandazione su questo argomento a causa della mancanza di evidenze per rispondere alla domanda 2. | Condizionale | Bassa |
| Manutenzione di un adeguato controllo del volume di sangue circolante / normovolemia | L'uso di strategie specifiche per la gestione dei fluidi durante l'intervento chirurgico ha riacutte sull'incidenza delle SSI? | Per ridurre il rischio di SSI, il panel suggerisce l’uso di una fluidoterapia intraoperatoria mirata. | Condizionale | Bassa |
| Teli e camici | 1. C’è una differenza nei tassi di SSI a seconda dell’utilizzo di teli e camici monouso non tessuti rispetto a quelli riutilizzabili?
1.1. C’è una differenza nei tassi SSI a seconda dell’utilizzo di teli non tessuti monouso rispetto ai teli riutilizzabili?
1.2. C’è una differenza nei tassi SSI a seconda dell’utilizzo di camici monouso non tessuti rispetto ai camici riutilizzabili?
2. L’uso di teli da incisione monouso adesivi riduce il rischio di SSI? | Il panel suggerisce che per prevenire le SSI durante le operazioni chirurgiche si possano utilizzare sia i teli e i camici steril monouso non tessuti che quelli riutilizzabili.
Nessuna evidenza specifica è stata rilevata per rispondere alle domande 1.1 e 1.2
2. Il panel suggerisce di non utilizzare teli da incisione adesivi in plastica, con o senza proprietà antimicrobiche, allo scopo di prevenire la SSI. | Condizionale | Da moderata a molto bassa |

Linee Guida Globali per la prevenzione delle infezioni del sito chirurgico

18
<table>
<thead>
<tr>
<th>Argomento</th>
<th>Domande della ricerca</th>
<th>Raccomandazioni</th>
<th>Potenza</th>
<th>Qualità dell’evidenza</th>
</tr>
</thead>
<tbody>
<tr>
<td>Misure preoperatorie</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dispositivi di protezione della ferita</td>
<td>L’uso di dispositivi per la protezione delle ferite riduce il tasso di SSI in un intervento ad addome aperto?</td>
<td>Al fine di ridurre il tasso di SSI, il panel suggerisce di prendere in considerazione l’uso di dispositivi per la protezione delle ferite in procedure chirurgiche addominali pulite-contaminate, contaminate e sporche</td>
<td>Condizionale</td>
<td>Molto bassa</td>
</tr>
<tr>
<td>Irrigazione della ferita chirurgica</td>
<td>L’irrigazione intraoperatoria della ferita riduce il rischio di SSI?</td>
<td>Il panel ha ritenuto che non vi siano evidenze sufficienti per pronunciarsi pro o contro l’irrigazione con soluzione salina delle ferite chirurgiche prima della sutura al fine di prevenire le SSI. Il panel suggerisce di considerare l’uso dell’irrigazione della ferita con una soluzione acquosa PVP-I prima della sutura allo scopo di prevenire SSI, soprattutto nelle ferite pulite e pulite contaminate. Il panel suggerisce che allo scopo di prevenire le SSI non si debba utilizzare l’irrigazione antibiotica della ferita chirurgica.</td>
<td>Condizionale</td>
<td>Bassa</td>
</tr>
<tr>
<td>Terapia profilattica a pressione negativa per le ferite</td>
<td>La terapia profilattica a pressione negativa per le ferite riduce i tassi di SSI rispetto alle medicazioni tradizionali?</td>
<td>Allo scopo di prevenire le SSI, il panel suggerisce l’uso della terapia profilattica a pressione negativa nei pazienti adulti, su incisioni chirurgiche con chiusura primaria ad alto rischio, tenendo conto delle risorse.</td>
<td>Condizionale</td>
<td>Bassa</td>
</tr>
</tbody>
</table>
| Uso dei guanti chirurgici | 1. Quando è consigliato il doppio guanto?
2. Quali sono i criteri per la sostituzione dei guanti durante l’operazione?
3. Che tipo di guanti deve essere usato? | Il panel ha deciso di non formulare una raccomandazione a causa della mancanza di evidenze sufficienti a valutare se il doppio guanto o la sostituzione dei guanti durante l’operazione o l’uso di specifici tipi di guanti siano più efficaci nel ridurre il rischio di SSI. | NA | NA |

Linee Guida Globali per la prevenzione delle infezioni del sito chirurgico

19
<table>
<thead>
<tr>
<th>Argomento</th>
<th>Domande della ricerca</th>
<th>Raccomandazioni</th>
<th>Potenza</th>
<th>Qualità dell’evidenza</th>
</tr>
</thead>
<tbody>
<tr>
<td>Misure preoperatorie</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sostituzione degli strumenti chirurgici</td>
<td>Al momento della chiusura della ferita, c'è una differenza nelle SSI quando gli strumenti vengono cambiati per la chiusura fasciale, sottocutanea e cutanea e si utilizza un nuovo set di strumenti sterili?</td>
<td>Il panel ha deciso di non formulare una raccomandazione su questo argomento per mancanza di evidenze.</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Suture rivestite con antibatterico</td>
<td>Le suture rivestite con antibatterico sono efficaci nella prevenzione delle SSI? Se sì, quando e come dovrebbero essere usate?</td>
<td>Il panel suggerisce l’uso di suture rivestite con Triclosan allo scopo di ridurre il rischio di SSI, indipendentemente dal tipo di intervento chirurgico.</td>
<td>Condizionale</td>
<td>Moderata</td>
</tr>
<tr>
<td>Sistemi di ventilazione a flusso laminare nel contesto di ventilazione della sala operatoria.</td>
<td>1. L’uso di aria a flusso laminare in sala è associato alla riduzione complessiva delle SSI o di quelle profonde? 2. L’uso di ventilatori o dispositivi di raffreddamento aumenta le ‘SSI’? 3. La ventilazione naturale è un’alternativa accettabile alla ventilazione meccanica?</td>
<td>Il panel suggerisce di non utilizzare sistemi di ventilazione a flusso laminare per ridurre il rischio di SSI per i pazienti sottoposti a chirurgia totale di artroplastica. Il panel ha deciso di non formulare una raccomandazione su questi argomenti a causa dell’insufficienza di evidenze per rispondere alle domande 2 e 3.</td>
<td>Condizionale</td>
<td>Da bassa a molto bassa</td>
</tr>
<tr>
<td>Misure postoperatorie</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prosecuzione profilassi antibiotica</td>
<td>Prolungare la profilassi nel postoperatorio riduce il rischio di SSI rispetto alla profilassi preoperatoria e (se necessario) intraoperatoria?</td>
<td>Il panel esprime parere contrario alla profilassi antibiotica dopo il completamento dell’intervento al fine di prevenire le SSI.</td>
<td>Forte</td>
<td>Moderata</td>
</tr>
<tr>
<td>Medicazioni avanzate</td>
<td>Per la prevenzione delle SSI nei pazienti chirurgici si dovrebbero utilizzare le medicazioni avanzate piuttosto che quelle sterili standard?</td>
<td>Il panel suggerisce di non utilizzare alcun tipo di medicazione avanzata invece di una medicazione standard su ferite chirurgiche con chiusura primaria al fine di prevenire le SSI.</td>
<td>Condizionale</td>
<td>Bassa</td>
</tr>
<tr>
<td>Profilassi antibiotica in presenza di un drenaggio e timing ottimale per la rimozione del drenaggio.</td>
<td>1. In presenza di drenaggi, la profilassi antibiotica prolungata impedisce le SSI? 2. Quando si usano i drenaggi, quanto tempo devono essere mantenuti in situ per ridurre al minimo le SSI come complicanza?</td>
<td>Il panel suggerisce che la profilassi antibiotica pre-operatoria non debba essere continuata in presenza di un drenaggio della ferita al fine di prevenire le SSI. Il panel suggerisce la rimozione del drenaggio della ferita quando clinicamente indicato. Non sono state reperite evidenze che permettano di stilare una raccomandazione sul timing ottimale della rimozione della drenaggio della ferita al fine di prevenire le SSI.</td>
<td>Condizionale</td>
<td>Bassa</td>
</tr>
</tbody>
</table>

Linee Guida Globali per la prevenzione delle infezioni del sito chirurgico
Le infezioni correlate all’assistenza (ICA) colpiscono i pazienti quando ricevono le cure e sono l’evento avverso più frequente che incide sulla sicurezza del paziente in tutto il mondo. Le ICA più comuni comprendono infezioni delle vie urinarie, del torace, del sangue e delle ferite. Sono causate prevalentemente da microrganismi resistenti agli antibiotici comunemente usati, che possono essere multifarmaco resistenti.

Sebbene l’onere globale sia sconosciuto a causa della difficoltà di raccogliere dati attendibili, si stima che ogni anno centinaia di milioni di pazienti siano interessati dal fenomeno, causa di mortalità significativa e danno economico per i sistemi sanitari. Attualmente, nessun Paese è esente dall’onere delle malattie causate da ICA e dall’antibiotico-resistenza (AMR).

Ogni 100 pazienti ospedalizzati in un dato momento, sette nei Paesi sviluppati e quindici in quelli in via di sviluppo acquisiranno almeno un’ICA. L’onere endemico è anche significativamente (almeno 2-3 volte) superiore nei Paesi a reddito medio basso (LMIC) rispetto a quelli ad alto reddito, in particolare nei pazienti ricoverati in unità di terapia intensiva e nei neonati.

Un recente lavoro del Programma Clean Care is Safer Care (http://www.who.int/gpsc/en) dell’Organizzazione Mondiale della Sanità (OMS) dimostra che l’infezione del sito chirurgico (SSI) è il tipo di infezione più studiato e più frequente nei LMIC e che colpisce fino a uno terzo dei pazienti sottoposti a una procedura chirurgica. Nei LMIC, l’incidenza totale è stata di 11,8 per ogni 100 procedure chirurgiche (range 1,2-23,6) (1,2). Anche se l’incidenza delle SSI è molto più bassa nei Paesi ad alto reddito, le SSI rimangono il secondo tipo più frequente di ICA in Europa e negli Stati Uniti d’America (USA) e in alcuni Paesi europei occupano il primo posto. Il Centro Europeo per Prevenzione e il Controllo delle Malattie (ECDC) ha riportato i dati sulla sorveglianza delle SSI per il periodo 2010-2011.

L’incidenza cumulativa più elevata è stata per la chirurgia del colon con il 9,5% di casi ogni 100 operazioni, seguita dal 3,5% per i bypass coronarici, 2,9% per i parti cesarei, 1,4% per la colecistectomia, 1,0% per la prostesi dell’anca, 0,8% per la laminectomia e 0,75% per la protesi al ginocchio (3).

Nel percorso di un paziente chirurgico sono stati identificati molti fattori di rischio. La prevenzione di queste infezioni è complessa e richiede l’integrazione di una gamma di misure prima, durante e dopo l’intervento chirurgico. Tuttavia, l’attuazione di tali misure non è standardizzata in tutto il mondo e non sono attualmente disponibili linee guida internazionali.

Su questo argomento l’OMS non ha emanato linee guida complete, anche se alcuni aspetti connessi alla prevenzione delle SSI sono trattati nelle Linee guida dell’OMS per una chirurgia sicura del 2009 (4). Sono disponibili alcune linee guida nazionali, in particolare in Europa e in Nord America, ma sono state riscontrate diverse incongruenze nell’interpretazione delle evidenze e delle raccomandazioni e raramente sono stati utilizzati sistemi validati di classificazione delle evidenze. Aspetto importante è che nessuna delle linee guida attualmente disponibili si basa su revisioni sistematiche condotte ad hoc per fornire un supporto evidence-based allo sviluppo di raccomandazioni. Inoltre, argomenti importanti e di rilevanza globale che, se trascurati, possono portare a conseguenze potenzialmente dannose per il paziente sono menzionati in poche linee guida, quali ad esempio, l’antisepsi delle mani in chirurgia o la durata della profilassi antibiotica chirurgica. Da notare che proprio il prolungamento della profilassi antibiotica è una delle principali determinanti dell’antibiotico-resistenza.
Dato il peso delle SSI in molti Paesi e le numerose lacune nelle linee guida evidence-based, vi è la necessità di una standardizzazione basata su strategie di provata efficacia e di un approccio globale. Linee guida internazionali e complete per la prevenzione delle infezioni del sito chirurgico devono comprendere anche gli approcci più innovativi o recenti. Per garantire un contributo universale alla sicurezza del paziente, le raccomandazioni devono essere valide per qualsiasi Paese, indipendentemente dal livello di sviluppo e dalle risorse.

Lo scopo di queste linee guida è fornire una gamma completa di raccomandazioni evidence-based per gli interventi da mettere in atto durante i periodi pre-, intra- e postoperatori per prevenire le SSI, tenendo conto delle risorse disponibili, dei valori e delle preferenze.

1.1 Target di riferimento

Il target di riferimento primario per queste linee guida è l’équipe chirurgica, ossia chirurghi, infermieri, personale tecnico di supporto, anestesisti e qualsiasi altro professionista che fornisca assistenza chirurgica diretta. Alcune raccomandazioni o aspetti di queste linee guida riguarderanno anche i farmacisti e gli addetti alla sterilizzazione. Le linee guida saranno uno strumento essenziale per i professionisti del settore sanitario responsabili dello sviluppo nazionale e locale di protocolli e politiche di prevenzione delle infezioni, come ad esempio i politici e i professionisti responsabili della prevenzione e del controllo delle infezioni (ICI). Da notare che sarà fondamentale coinvolgere i senior manager, gli amministratori ospedalieri, gli incaricati del miglioramento della qualità e della sicurezza dei pazienti e i responsabili della formazione e aggiornamento del personale per contribuire a far avanzare l’adozione e l’implementazione di queste linee guida.

1.2 Scopo delle linee guida

Popolazione e outcome di interesse

Le linee guida si concentrano sulla prevenzione delle infezioni del sito chirurgico (SSI) in pazienti di qualsiasi età sottoposti a qualsiasi tipo di intervento chirurgico. Tuttavia, ci sono raccomandazioni che per la popolazione pediatrica o non sono state dimostrate per mancanza di prove o sono inapplicabili. I risultati primari considerati per lo sviluppo delle raccomandazioni erano il verificarsi di SSI (Tassi di incidenza) e la mortalità attribuibile a SSI.

Domande prioritarie

2. METODI

2.1 Il processo di sviluppo delle linee guida OMS

Le linee guida sono state sviluppate seguendo le raccomandazioni standard descritte nel Manuale OMS per lo sviluppo delle linee guida (5) e secondo una proposta di scoping approvata dal comitato per la revisione delle linee guida dell'OMS.

In sintesi, il processo comprendeva: (i) l'identificazione dei principali outcome critici e degli argomenti prioritari e formulazione delle relative domande PICO; (ii) il recupero delle evidenze attraverso revisioni sistemiche specifiche per ciascun argomento utilizzando una metodologia standardizzata concordata; (iii) valutazione e sintesi delle evidenze; iv) formulazione di raccomandazioni; (v) stesura dei contenuti e pianificazione della strategia di diffusione e implementazione.

Il piano iniziale per le linee guida prevedeva una sezione dedicata alle migliori strategie di implementazione delle raccomandazioni sviluppate, basata su una revisione sistematica della letteratura e sui consigli di esperti. Tuttavia, tenuto conto dell'ampia portata e della lunghezza del presente documento, dopo consultazione con il metodologo e con il segretariato del comitato per la revisione delle linee guida, il direttivo ha deciso di non inserire questa sezione. A questo aspetto è dedicato un breve capitolo, ma verrà fornito un documento separato dedicato a questo argomento per accompagnare le linee guida.

Lo sviluppo delle linee guida ha comportato la formazione di quattro gruppi principali per guidare il processo; i loro ruoli specifici sono descritti nelle sezioni a seguire.

Gruppo direttivo OMS per le linee guida

Il gruppo direttivo OMS per le linee guida è stato presieduto dal Direttore del Department of Service Delivery and Safety (SDS). I membri partecipanti provenivano dal team IPC del SDS, dal programma sull’emergenza e le cure chirurgiche essenziali, dal Dipartimento pandemie e epidemie e dal team IPC presso l’Ufficio Regionale OMS delle Americhe.

Il gruppo ha redatto la bozza del documento iniziale per lo sviluppo delle linee guida. In collaborazione con il gruppo di sviluppo (GDG), ha quindi individuato i principali risultati critici e gli argomenti prioritari e ha formulato le relative domande in formato PICO. Il gruppo ha individuato i team di revisione sistematica, il metodologo, i membri del GDG e i revisori esterni. Ha inoltre supervisionato il recupero e la sintesi delle evidenze, organizzato le riunioni del GDG, preparato o rivisto il documento di orientamento finale, gestito le osservazioni dei revisori esterni e la pubblicazione e la diffusione delle linee guida. I membri del gruppo direttivo dell’OMS sono presentati nella sezione Ringraziamenti e l’elenco completo delle affiliazioni è disponibile nell’allegato (sezione 6).

Gruppo sviluppo delle linee guida

Per costituire il GDG, il gruppo direttivo dell’OMS ha individuato 20 esperti esterni e gli stakeholders delle sei regioni OMS. E’ stata garantita la rappresentanza dei vari professionisti e gruppi di stakeholder, tra i quali chirurghi, infermieri, ICI e specialisti in malattie infettive, ricercatori e rappresentanti dei pazienti. Nella selezione si è tenuto conto anche della rappresentanza geografica e dell’equilibrio di genere. I membri hanno fornito input per la redazione del campo di applicazione delle linee guida e delle domande PICO e hanno partecipato alla scelta della metodologia per le revisioni sistemiche. Inoltre, il GDG ha valutato le evidenze a sostegno delle raccomandazioni, consigliato circa l’interpretazione delle stesse, formulato le raccomandazioni finali basate sul progetto preparato dal gruppo direttivo dell’OMS, riesaminato e approvato il documento finale. I membri del GDG sono presentati nell’allegato (Sezione 6.1).

Gruppo Esperti per le revisioni sistemiche

Dato l’elevato numero di revisioni sistemiche necessario a supportare lo sviluppo di raccomandazioni per le linee guida, è stato creato un gruppo di esperti di valutazione sistematica (SREG). Di questo gruppo facevano parte ricercatori e professionisti con un elevato livello di competenza sui temi selezionati e sulla conduzione delle revisioni
sistematische. Anche se alcune revisioni sono state condotte dal team Prevenzione e Controllo delle Infezioni dell'OMS, la maggior parte degli esperti del gruppo si sono offerti volontariamente per condurre le revisioni sistemiche, come contributo gratuito delle rispettive istituzioni per lo sviluppo delle linee guida.

Il SREG ha intrapreso le revisioni sistemiche e le meta-analisi preparando sintesi singole, disponibili come appendici on-line delle linee guida. Ha valutato anche la qualità delle evidenze e redatto i profili delle evidenze secondo la metodologia di classificazione GRADE. Alcuni membri del SREG facevano parte anche del GDG.

Tuttavia, seguendo le istruzioni del Comitato per la revisione delle linee guida e per evitare qualsiasi conflitto intellettuale, gli esperti che avevano diretto la revisione sono stati esclusi dal consenso decisionale per lo sviluppo di raccomandazioni relative all'argomento che avevano rivisto, in particolare quando era necessaria la votazione. In quanto membro del SREG, anche il presidente del GDG è stato escluso dal processo decisionale sulle raccomandazioni basate su revisioni sistemiche condotte da lui e dalla sua squadra. Inoltre, nelle sessioni in cui il presidente presentava le evidenze delle recensioni sistemiche condotte dalla sua squadra, è stato identificato un altro membro del GDG per svolgere la funzione di presidente. I membri del GDG sono presentati nella sezione Ringraziamenti e l'elenco completo, comprese le affiliazioni, è disponibile nell'allegato (sezione 6.1).

Gruppo esterno di revisione tra pari

Questo gruppo comprendeva cinque esperti tecnici con un elevato livello di conoscenza e di esperienza nei campi della chirurgia e della prevenzione e controllo delle infezioni. Il gruppo era geograficamente equilibrato per garantire sia la prospettiva dei Paesi a reddito alto che medio-basso. Nessun membro ha dichiarato conflitti di interessi. Il gruppo ha esaminato il documento finale per identificare eventuali errori e commentarne sia il contenuto tecnico che le evidenze, la chiarezza del linguaggio, i problemi e le implicazioni contestuali per l’implementazione. Il gruppo ha garantito che i processi decisionali delle linee avessero tenuto conto di valori e preferenze contestuali dei potenziali utenti delle raccomandazioni, professionisti sanitari e responsabili politici. Non faceva parte del mandato di questo gruppo modificare le raccomandazioni formulate dal GDG, tuttavia, in alcuni casi, sono stati forniti commenti molto utili che ha portato a modifiche nel testo di una raccomandazione o delle spiegazioni fornite all'interno delle osservazioni. I membri del Gruppo Esterno Revisione tra pari sono presentati nei Ringraziamenti e l’elenco completo, comprese le affiliazioni, è disponibile nell’allegato (sezione 6.4).

2.2 Identificazione e recupero delle evidenze

Il SREG ha recuperato prove sull’efficacia di interventi per la prevenzione delle SSI da studi randomizzati controllati (RCT) e non randomizzati, secondo necessità. Lo Steering Group ha indicato al SREG la metodologia e gli output desiderati dalle revisioni sistemiche e i membri dei due gruppi hanno concordato tempi e modi dei report. Utilizzando l’elenco assemblato degli argomenti prioritari, delle domande e dei risultati critici identificati dallo Steering Group dell’OMS per le linee guida, dal GDG e dal metodologo, tra dicembre 2013 e ottobre 2015 il SREG ha condotto 27 revisioni sistemiche per fornire evidenze a sostegno dello sviluppo delle raccomandazioni.

Per identificare gli studi rilevanti, sono state condotte ricerche sistemiche in varie banche dati elettroniche, tra le quali Medline (Ovidio), Excerpta Medica Database, Cumulative Index to Nursing and Allied Health Literature, Cochrane Central Register of Controlled Trials e nelle banche dati regionali dell’OMS. Sono stati considerati tutti gli studi pubblicati dopo il 1 ° gennaio 1990. In alcune revisioni, il GDG e il SREG hanno ritenuto che gli studi di maggiore rilvanza sull’argomento fossero stati pubblicati prima del 1990 e quindi non hanno applicato il vincolo temporale. Sono stati considerati studi pubblicati almeno in inglese, francese e spagnolo; alcune revisioni non hanno avuto alcuna restrizione linguistica. È stato utilizzato un elenco completo dei termini di ricerca, tra cui Medical Subject Headings.

I criteri per l’inclusione o l’esclusione della letteratura (ad esempio, progettazione dello studio, dimensione del campione e durata del follow-up) dalle revisioni sono stati basati sulle evidenze necessarie e disponibili per rispondere a domande specifiche della ricerca. Sono stati considerati sia studi effettuati nei LMIC che in Paesi ad alto reddito. Le strategie di ricerca e le sintesi delle evidenze per ciascuna revisione sistematica sono riportate nelle
Due revisori indipendenti hanno fatto lo screening dei titoli e degli abstract dei riferimenti recuperati di studi potenzialmente rilevanti. Si è quindi ottenuto il testo integrale di tutti gli articoli sulla base dei criteri di inclusione. Gli studi duplicati sono stati esclusi. Entrambi gli autori hanno estrapolato i dati in una tabella predefinita e valutato criticamente gli studi recuperati.

La qualità è stata valutata usando lo Strumento di Colloborazione Cochrane per misurare il rischio di polarizzazione degli RCT (6) e la Newcastle-Ottawa Quality Assessment Scale per gli studi di coorte (7). Ogni discordanza è stata risolta con la discussione o, quando necessario, consultando l’autore senior.

Le metanalisi dei confronti disponibili sono state eseguite, come opportuno, utilizzando Review Manager versione 5.3 (8). Le stime grezze sono state raggruppate come odds ratio (OR) con intervalli di confidenza del 95% (CI) utilizzando un modello di effetti randomizzati. Per valutare la qualità del corpus delle evidenze recuperate è stato utilizzato il metodo GRADE (software GRADE Pro; Http://gradepro.org/) (9, 10). Sulla base della valutazione, la qualità delle evidenze disponibili è stata classificata: "alta", "moderata", "bassa" o "molto bassa" (Tabella 2.2.1).

Tabella 2.1.1 - Categorie GRADE per il livello qualità delle evidenze*

<table>
<thead>
<tr>
<th>Alta:</th>
<th>Siamo molto sicuri che l'effetto reale si avvicini a quello stimato.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moderata:</td>
<td>Siamo mediamente fiduciosi sull'effetto stimato: l'effetto reale è probabilmente vicino a quello stimato, ma esiste la possibilità che sia sostanzialmente differente.</td>
</tr>
<tr>
<td>Bassa:</td>
<td>La nostra fiducia nella stima dell'effetto è limitata: il vero effetto può essere sostanzialmente differente.</td>
</tr>
<tr>
<td>Molto bassa:</td>
<td>Abbiamo molto poca fiducia nella stima dell'effetto: l'effetto reale è probabilmente completamente diverso dallo stimato.</td>
</tr>
</tbody>
</table>

In alcune raccomandazioni condizionali, il GDG ha deciso di utilizzare la terminologia " il panel suggerisce di considerare ..." ritenendo importante stimolare l'utente a intraprendere un processo decisionale approfondito e dare più flessibilità, specialmente perché queste raccomandazioni riguardano osservazioni importanti per le implicazioni di risorse e la fattibilità nei LMIC. Sono stati individuati anche le aree e gli argomenti che richiedono ulteriori ricerche. Dopo ogni riunione, gli schemi finali delle raccomandazioni sono stati inoltrati a tutti i membri del GDG che hanno fornito l’approvazione scritta ed eventuali commenti.

Le revisioni sistemiche avevano come target pazienti di qualsiasi età. In generale, queste linee guida sono valide sia per i pazienti adulti che per quelli pediatrici, a meno che non sia diversamente specificato nel testo della raccomandazione stessa o nelle osservazioni. In varie revisioni sistemiche, non è stato recuperato alcuno studio sulla popolazione pediatrica e quindi il GDG ha discusso punto per punto se le raccomandazioni fossero valide anche per questa popolazione. Come risultato, ci sono raccomandazioni che sono o inapplicabili in
pediatria o di efficacia non provata per mancanza di evidenze.

Il segretariato dell'OMS ha redatto la bozza dei capitoli delle linee-guida contenenti le raccomandazioni e l'ha distribuita ai membri del GDG per l'approvazione finale e/o i commenti. Rilevanti modifiche suggerite sono state inserite in una seconda bozza. Se i commenti del GDG implicavano modifiche sostanziali alla raccomandazione, tutti i membri partecipavano a discussioni online o telefoniche per raggiungere un accordo finale sul testo. E' stata quindi completata la seconda bozza, consegnata al Gruppo Esterno di Revisione tra Pari allo Steering Group. Il documento è stato ulteriormente rivisto alla luce dei loro commenti. Nella maggior parte dei casi non si è tenuto conto delle modifiche suggerite alla formulazione delle raccomandazioni oppure allo scopo del documento ma per tre raccomandazioni specifiche, la maggior parte dei revisori ha suggerito cambiamenti simili e questo è stato considerato significativo dal direttivo. In questi casi, sotto la guida del metodologo, sono state attivate ulteriori teleconferenze con il GDG per raggiungere il consenso su piccole modifiche del testo che soddisfassero le osservazioni dei revisori.

Il metodologo ha assicurato che il modello GRADE fosse applicato appropriatamente durante tutto il processo di sviluppo delle linee guida. Questo ha implicato la revisione delle domande PICO e dei risultati delle revisioni sistematiche e delle metanalisi, compresa la partecipazione alla ri-analisi quando opportuno, assicurando così la loro completezza e qualità. Il metodologo ha anche esaminato tutti i profili delle evidenze e delle decisioni prima e dopo le riunioni del GDG e fornito indicazioni per formulare il testo e la forza delle raccomandazioni.

Riferimenti

3. TEMI IMPORTANTI NELL’APPROCCIO ALLA PREVENZIONE DELLE SSI

3.1 Fattori di rischio di infezione del sito chirurgico: epidemiologia e peso mondiale

Background

Le SSI sono potenziali complicanze associate a qualunque tipo di procedura chirurgica. Anche se si collocano tra le ICA più prevenibili (1, 2), nel mondo hanno ancora un’incidenza significativa sulla morbilità e mortalità del paziente, sui costi supplementari a carico dei sistemi sanitari e degli utenti (3-11). Le SSI sono la tipologia di infezione più studiata e sono quelle che nei Paesi a medio e basso reddito conducono ad una maggiore ospedalizzazione (3, 4). Per questi motivi la prevenzione delle SSI ha ricevuto notevole attenzione da parte dei chirurghi e dei professionisti che si occupano del controllo delle infezioni, delle autorità sanitarie, dei mezzi di comunicazione e del pubblico. In particolare, c’è la percezione pubblica che le SSI possano rispecchiare una scarsa qualità assistenziale (12). Scopo di questa revisione è fornire un aggiornamento sui dati globali delle SSI con particolare attenzione ai LMIC, in particolare modo per valutare i tassi di infezione, i fattori di rischio correlati e il peso economico.

Sintesi delle evidenze disponibili

1. Peso delle SSI
 a. Evidenze dei paesi ad alto reddito
 i. Stati Uniti d’America

Nel 2010, negli ospedali per acuti degli Stati Uniti sono stati eseguiti circa 16 milioni di interventi chirurgici (13). In un recente rapporto sui tassi nazionali e statali di ICA, basati su dati del 2014, 3.654 ospedali hanno riportato 20.916 casi di SSI su 2.417.933 procedure chirurgiche eseguite in quell’anno (5).

È interessante notare che tra il 2008 e il 2014 ci fu un complessivo decremento del 17% delle SSI nelle 10 principali operazioni chirurgiche. Ad esempio, c’era stato un calo del 17% nelle isterectomie addominali e del 2% nella chirurgia del colon.

Al contrario, uno studio di prevalenza multi-stato sulle ICA condotto nel 2011 ha stimato 157.000 casi di SSI correlati a interventi chirurgici, classificando le SSI al secondo posto tra le ICA più frequentemente riportate tra il 2006 e il 2008 (14).

Un altro studio ha riportato i dati del National Healthcare Safety Network (NHSN) tra il 2006 e il 2008, che dichiaravano 16.147 casi di SSI a seguito di 849.659 interventi chirurgici, che rappresentano un tasso complessivo dell’1,9% (15).

Negli Stati Uniti le tipologie di farmacoresistenza nelle ICA sono stati descritti (16) e confrontati con un precedente rapporto (17). Tra le 1029 strutture che hanno riportato uno o più casi di SSI, lo Staphylococcus aureus è stato il patogeno più comunemente riportato (30,4%), seguito da stafilococchi coagulasi negativi (11,7%), Escherichia coli (9,4%) e Enterococcus Faecalis (5,9%). La Tabella 3.1.1 riepiloga la distribuzione dei primi sette agenti patogeni (16).
Tabella 3.1.1 Distributione e percentuale di patogeni isolati associati a SSI e resistenti ad agenti antimicrobici selezionati, NHSN, 2009-2010 *

<table>
<thead>
<tr>
<th>Rank</th>
<th>Patogeno</th>
<th>N° patogeni/ totale patogeni SSI riportati (%)</th>
<th>Agente/i antimicrobico</th>
<th>N° isolati testati</th>
<th>Resistenza (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>S. aureus</td>
<td>6.415 (30.4)</td>
<td>OX/METH</td>
<td>6.304 (98.3)</td>
<td>43.7</td>
</tr>
<tr>
<td>2</td>
<td>Stafilococco coagulasi negativo</td>
<td>2.477 (11.7)</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>3</td>
<td>E. Coli</td>
<td>1.981 (9.4)</td>
<td>ESC4</td>
<td>1.627 (82.1)</td>
<td>10.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>FQ3</td>
<td>1.876 (94.7)</td>
<td>25.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Carbapenemi</td>
<td>1.330 (67.1)</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MDR1</td>
<td>1.390 (70.2)</td>
<td>1.6</td>
</tr>
<tr>
<td>4</td>
<td>E. faecalis</td>
<td>1.240 (5.9)</td>
<td>VAN</td>
<td>1.187 (95.7)</td>
<td>6.2</td>
</tr>
<tr>
<td>5</td>
<td>Pseudomonas aeruginosa</td>
<td>1.156 (5.5)</td>
<td>AMINOS</td>
<td>664 (57.4)</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ESC2</td>
<td>1097 (94.9)</td>
<td>10.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>FQ2</td>
<td>1.111 (96.1)</td>
<td>16.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Carbapenemi</td>
<td>872 (75.4)</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PIP/PIPTAZ</td>
<td>818 (70.8)</td>
<td>6.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MDR2</td>
<td>1053 (91.1)</td>
<td>5.3</td>
</tr>
<tr>
<td>6</td>
<td>Enterobacter spp.</td>
<td>849 (4.0)</td>
<td>ESC4</td>
<td>816 (96.1)</td>
<td>27.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Carbapenemi</td>
<td>594 (70.0)</td>
<td>2.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MDR1</td>
<td>648 (76.3)</td>
<td>1.7</td>
</tr>
<tr>
<td>7</td>
<td>Klebsiella spp.</td>
<td>844 (4.0)</td>
<td>ESC4</td>
<td>710 (84.1)</td>
<td>13.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Carbapenemi</td>
<td>582 (69.0)</td>
<td>7.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MDR1</td>
<td>621 (73.6)</td>
<td>6.8</td>
</tr>
</tbody>
</table>

* Modificato da riferimento 16.

Per studiare i costi delle SSI, uno studio ha utilizzato i dati dei ricoveri ospedalieri del 2005 provenienti dall’US Nationwide Inpatient Sample, che rappresenta 1054 ospedali di 37 stati. La degenza ospedaliera protratta attribuibile a SSI era di 9,7 giorni con un aumento dei costi di US$ 20.842 per ricovero. In prospettiva nazionale, a casi di SSI sono stati associati 406.730 giorni di extra ricovero, i e costi ospedalieri hanno superato i 900 milioni di dollari.

Ulteriori 91.613 riammissioni per il trattamento di SSI portano ad una stima di altre 521.933 giornate di assistenza pari ad un costo di quasi 700 milioni di dollari (18).

Applicando due diversi aggiustamenti agli indici dei prezzi al dettaglio per tener conto del tasso di inflazione nei prezzi delle risorse ospedaliero, i centri per il controllo e la prevenzione delle malattie hanno stimato che i costi ospedalieri aggregati attribuibili ai pazienti con infezione da SSI variava tra US$ 1.087 e US$ 29.443 dollari per infezione (aggiustato al valore del dollaro nel 2007).

Utilizzando l’indice dei prezzi al consumo per consumatori urbani e servizi di ricovero ospedaliero, le SSI sono considerate le ICA con la più alta variabilità di costi annuali (rispettivamente tra 3,2 e 8,6 miliardi e tra 3,5 e 10 miliardi di US$) (19).

ii. Paesi europei

L’indagine europea sulla prevalenza di punto delle ICA e l’uso di antimicrobici condotta nel 2011-2012...
ha mostrato che le SSI rappresentano le seconde ICA più frequenti in ospedale (20). Un recente rapporto della ECDC sulla sorveglianza delle SSI ha fornito dati per il 2010 e il 2011 (6) da 20 network in 15 paesi dell’Unione Europea e un Paese dell’area economica che utilizzano un protocollo standardizzato (21). La protesi d’anca è stato l’intervento chirurgico riportato con maggiore frequenza, rappresentando il 33% del totale. L’incidenza cumulativa più elevata di pazienti con SSI è stata nella chirurgia del colon con il 9,5% (episodi ogni 100 operazioni), seguita dal 3,5% per l’innesto di bypass coronarici, 2,9% per il taglio cesareo, 1,4% per la colecistectomia, 1,0% per la protesi dell’anca, 0,8% per la laminectione e 0,75% per la protesi del ginocchio (6). I risultati hanno mostrato anche un andamento decrescente nell’incidenza di SSI nei diversi tipi di interventi (taglio cesareo, protesi dell’anca e laminectione) (Figura 3.1.1), suggerendo quindi che, negli ospedali partecipanti, gli sforzi per la prevenzione, tra cui la sorveglianza, hanno avuto successo (6, 22).

Uno studio pubblicato nel 2004 ha esaminato i dati di 84 studi e stimato che i costi economici delle SSI in Europa avevano un range compreso tra 1,47 e 19,1 miliardi. Ha anche dedotto che la durata media del ricovero di un paziente infetto aumentava di circa 6,5 giorni e il costo del suo trattamento triplicava. L’analisi ha suggerito che probabilmente il peso economico SSI-attribuibile all’epoca era sottostimato (10).

In Francia, è stato stimato che nel 3% degli interventi chirurgici erano sopravvenute infezioni, per un costo totale annuo di quasi 58 milioni di Euro. Inoltre, i pazienti colpiti da SSI avevano subito un significativo aumento del rischio di mortalità (da 4 a 15 volte) e una durata del ricovero triplicata (23).

La prevalenza delle SSI in Svizzera è stata valutata del 5,4% in uno studio condotto in 50 ospedali per acuti che hanno partecipato al Programma svizzero di sorveglianza sulla prevalenza delle infezioni (24). Un altro studio descriveva uno schema di sorveglianza multicentrico delle SSI, durato 13 anni e attuato dal 1998 al 2010. I tassi di SSI riportati sono stati: 18,2% su 7.411 colectomie; 6,4% su 6.383 appendicectomie; 2,3% su 7.411 colecistectomie; 1,7% su 9.933 ernioraffie; 1,6% su 6.341 protesi d’anca; e 1,3% su 3.667 artroprotesi del ginocchio (25).
In Italia, il tasso SSI riportato dal Sistema Nazionale di Sorveglianza delle Infezioni del Sito Chirurgico per 355 reparti chirurgici italiani tra il 2009 e il 2011 era del 2,6% (1.628 casi su 60.460 interventi). Il 60% delle SSI erano diagnosticate attraverso una sorveglianza post-dimensioni di 30 giorni. Le percentuali più elevate riguardavano gli interventi di chirurgia del colon (9,0%) e del retto (7,0%), laparotomia (3,1%) e appendicectomia (2,1%) (26).

In Inghilterra, il più recente riepilogo dei dati raccolti dagli ospedali del Servizio Sanitario Nazionale riporta i tassi cumulativi di SSI a partire da gennaio 2008 a marzo 2013. Il tasso più alto è stato segnalato per i grandi interventi di chirurgia intestinale (8,3%, 95% CI: 7,9-8,7 per 1.000 giorni di ricovero), seguito dai piccoli interventi di chirurgia intestinale (4,9%, 95% CI: 4,3-5,7), del dotto biliare, del fegato e pancreas (4,9%, 95% CI: 4,1-5,9) e colecistectomia (4,6%, 95% CI: 3,1-6,6). Il tasso più basso è stato segnalato per la protesi del ginocchio (0,4%, 95% CI: 0,3-0,4) (8).

Dati raccolti tra aprile 2010 e marzo 2012 stimavano che la durata media della permanenza supplementare in ospedale attribuibile a SSI fosse di 10 giorni (7-13 giorni), per un totale di 4.694 giorni letto persi nei 2 anni (27).

iii. Australia

Uno studio ha valutato le tendenze temporali nei tassi di SSI e nei patogeni in 81 strutture sanitarie australiane che partecipavano al Sistema di sorveglianza delle infezioni associate dello stato di Vittoria. In totale sono state monitorate 183.625 procedure e per 5.123 di queste sono state segnalate SSI. Lo S. aureus era il patogeno più frequentemente identificato ma è stato osservato un aumento statisticamente significativo delle infezioni causate da E. coli ceftriaxone-resistente (rischio relativo: 1,37;95% CI: 1,10-1,70) (9).

iv. Giappone

v. Repubblica di Corea

Uno studio prospettico multicentrico di sorveglianza pubblicato nel 2000 ha concluso che le SSI rappresentavano il 17,2% di tutti le ICA segnalate in 15 ospedali per acuti (32, 33). Il report 2009 del sistema nazionale di sorveglianza delle SSI ha descritto l'incidenza e i fattori di rischio di SSI per 7 tipi di procedure. Il tasso di SSI per 100 operazioni è stato del 3,68% (22/1.169) per le craniotomie, del 5,96% (14/235) per le operazioni di shunt ventricolare, del 4,25% (75/1763) per le operazioni gastriche, del 3,37% (22/653) per interventi sul colon, del 5,83% (27/463) per la chirurgia rettale, del 1,93% (23/1190) per la protesi d'anca e del 2,63% (30/1139) per la protesi del ginocchio (34).

Tra il 2010 e il 2011 in 43 ospedali è stata eseguita una sorveglianza via web delle SSI per determinarne l'incidenza per 15 tipologie di procedura chirurgica. Il tasso complessivo di SSI rappresentava il 2,10% sul totale di 18.644 operazioni e differiva per tipologia di intervento (35). Inoltre, una revisione sistematica della letteratura pubblicata tra il 1995 e il 2010 sul peso epidemiologico ed economico delle SSI nella Repubblica di Corea ha segnalato un'incidenza complessiva che andava dal 2,0% al 9,7% (36). Le SSI sono state associate ad un aumento dei costi di ricovero e per ogni episodio era stimato un costo aggiuntivo di circa 2.000.000 di Won sudcoreani (circa US $ 1730). Le degenze postoperatorie per i pazienti con SSI sono state da 5 a 20 giorni più a lunghe (36).

In un recente studio condotto tra il 2008 e il 2012, il tasso riportato di SSI a seguito di gastrectomia è stato del 3,12% (522/16 918), del 2,05% (157/7656) per l'artroplastica totale dell'anca e dell'1,90% (152/7648) per l'artroplastica totale del ginocchio. Si è rilevata una significativa tendenza al ribasso dei tassi grezzi di SSI in 5 anni (37).
vi. Paesi del Golfo
Non siamo riusciti a recuperare dati pubblicati sui tassi di SSI per nessuno dei Paesi del Golfo (Bahrain, Arabia Saudita, Kuwait, Oman, Qatar e Emirati Arabi Uniti). Tuttavia, in Arabia Saudita, un’analisi quinquennale delle SSI in chirurgia ortopedica in un ospedale stimava un tasso del 2,55% (38). Un altro studio del King Abdulaziz Medical City (Arabia Saudita) ha confrontato i tassi di SSI per ernioraffia e colecistectomia del 2007 rispetto a quelli del 1999-2000. Nel 1999-2000, i tassi di SSI erano stati pari allo 0,88% per l’ernioraffia e dello 0,48% per la colecistectomia, mentre nel 2007 risultavano ridotti rispettivamente dell’80% (P = 0,049) e del 74% (P = 0,270) (39).

vii. Singapore
Da una revisione sistematica della letteratura (dal 2000 al 2012) (40) sul peso delle ICA nel sud-est asiatico, l’incidenza complessiva delle SSI risultava del 7,8% (95% CI:6,3-9,3). Uno studio condotto tra gennaio e marzo 2008 in un ospedale di cure terziarie a Singapore ha riportato un’incidenza di SSI dell’8,3% per la chirurgia generale, neurologica e ortopedica (41).

viii. Uruguay
I dati nazionali di incidenza delle SSI per il periodo 2012-2013 riferiscono che il tasso di incidenza per l’appendicectomia era del 3,2%, del 2,5% per la chirurgia cardiaca, del 6,2% per la colecistectomia e del 15,4% per la chirurgia del colon (42).

ix. Cile
La relazione nazionale 2013 sulla sorveglianza delle ICA ha mostrato una frequenza di SSI del 3,09% per il bypass coronarico e dell’1,89% per la sostituzione dell’articolazione dell’anca. Le frequenze di infezione nella colecistectomia laparotomica erano il 4,12% (95% CI: 2,8-6,11) più elevate rispetto alla colecistectomia laparoscopica (P <0,0001) (43).

Tabella 3.1.2 – Riepilogo dei tassi di SSI in diversi Paesi

<table>
<thead>
<tr>
<th>Paese (Riferimento)</th>
<th>Tasso SSI (%) (95% CI [quando fornito])</th>
<th>Anno*</th>
<th>Misura utilizzata</th>
<th>Progetto</th>
</tr>
</thead>
<tbody>
<tr>
<td>USA (5, 15)</td>
<td>0.9</td>
<td>Diminuzione del 17% delle SSI correlate alle 10 procedure scelte (confronto tra 2014 e 2008)</td>
<td>2014</td>
<td>Incidenza cumulativa (episodi per 100 interventi)</td>
</tr>
<tr>
<td>Unione Europea (6)</td>
<td>9.5 (COLO)</td>
<td>3.5 (CABG)</td>
<td>2.9 (CSEC)</td>
<td>1.4 (CHOL)</td>
</tr>
<tr>
<td>Inghilterra (8)</td>
<td>Chirurgia intestino crasso: 8.3 (7.9 – 8.7)</td>
<td>Chirurgia intestino tenue: 4.9 (4.3 – 5.7)</td>
<td>Chirurgia vie biliari, fegato e pancreas: 4.9 (4.1 – 5.9)</td>
<td>Colecistectomia: 4.6 (3.1 – 6.6)</td>
</tr>
<tr>
<td>Australia (9)</td>
<td>2.8</td>
<td></td>
<td>2002-2013</td>
<td>Tasso di incidenza (episodi per 1000 pazienti/giorno)</td>
</tr>
<tr>
<td>Giappone (29, 31)</td>
<td>Chirurgia del Colon: 15.0 (6691/44751)</td>
<td>Chirurgia del retto: 17.8 (3230/18187)</td>
<td>2008-2010</td>
<td>Incidenza cumulativa (episodi per 100 interventi)</td>
</tr>
</tbody>
</table>
b. Revisioni sistematiche OMS sulle SSI nei LMIC

Il report dell’OMS sull’onere globale dell’endemia di ICA ha fornito dati sulle SSI provenienti dai Paesi a reddito medio-basso. L’incidenza generale di SSI era di 11,8 casi per ogni 100 pazienti sottoposti a procedure chirurgiche (95% CI: 8,6 - 16,0) e 5,6 per 100 procedure chirurgiche (95% CI: 2,9 - 10,5). Nei LMIC le SSI erano la tipologia di infezione correlata all’assistenza più segnalata a livello ospedaliero e il livello di rischio era significativamente superiore a quello dei Paesi sviluppati (3, 4).

Recentemente, l’OMS ha condotto un aggiornamento della revisione sistematica della letteratura dal 1995 al 2015, con particolare attenzione alle SSI nei LMIC (OMS, dati non pubblicati). Sono stati inclusi in totale 231 articoli in inglese, francese, tedesco, spagnolo e portoghese. Il tasso di incidenza cumulativa era di 11,2 per ogni 100 pazienti chirurgici (95% CI: 9,7 - 12,8) per gli studi di incidenza/prospettici. Non c’era differenza statistica nei tassi di SSI quando si stratificava per qualità di studio, gruppi di età dei pazienti, regioni geografiche, PIL del Paese, criteri di definizione delle SSI, tipo di impostazione o anno di pubblicazione. C’erano però differenze statistiche tra gli studi in base al tipo di popolazione chirurgica ($P = 0.0001$) e al numero di pazienti per studio ($P = 0.0004$).

Negli studi di incidenza, il tasso di SSI era più alto per le procedure oncologiche (17,2%, 95% CI: 15,4-19,1), ortopediche (15,1%, 95% CI: 10,2-20,6), di chirurgia generale (14,1%, 95% CI: 11,6-16,8) e di chirurgia pediatrica (12,7%, 95% CI: 6,7-20,3). Il tasso di SSI espresso come numero di SSI per 100 operazioni chirurgiche è stato riportato in 57 (24,7%). Il tasso raggruppato di SSI utilizzando questa misura era del 6,1% (95% CI: 5,0-7,2) per gli studi di incidenza/prospettici (Figura 3.1.2).

Alcuni studi (44-50) hanno esaminato i tassi SSI dopo il taglio cesareo e hanno mostrato una sostanziale variabilità nella definizione di SSI e nelle percentuali segnalate. Tassi elevati di SSI dopo il taglio cesareo sono stati riportati in diversi LMIC: 16,2% in uno studio proveniente dalla Nigeria (44), 19% dal Kenya (45), 10,9% dalla Tanzania (46) e 9,7% dal Vietnam (47). In 2 studi provenienti dal Brasile, uno riportava un tasso del 9,6% (48) e l’altro un tasso più alto, del 23,5% (49). In confronto, in Europa è riportato un tasso medio di SSI molto inferiore, pari al 2,9% (6, 21).
2. Fattori che aumentano il rischio di SSI

Sono molti i fattori che influenzano la guarigione delle ferite chirurgiche e che determinano il potenziale di infezione (51). Tra questi vi sono variabili legate al paziente (endogene) e altre legate ai processi/procedure (esogene), che influiscono sul rischio per il paziente di sviluppare una SSI. Alcune variabili non sono ovviamente modificabili, come l'età e il sesso, mentre altri potenziali fattori possono essere migliorati per aumentare la probabilità di un esito chirurgico positivo, come lo status nutrizionale, il fumo, l'uso corretto di antibiotici e la tecnica intraoperatoria.

L'utilità della valutazione dei rischi e della definizione stessa di rischio è discutibile poiché ci sono pochissimi studi che hanno riportato variazioni negli outcome del paziente basate su informazioni ottenute dalla valutazione dei rischi (52, 53). Uno studio ha analizzato un rapporto di dati di due anni del NHSN per tutte le procedure chirurgiche e ha utilizzato la regressione logistica ordinale per sviluppare modelli specifici di rischio per categoria di procedura. Lo studio ha concluso che un insieme di nuovi modelli che utilizzavano elementi ricavati dai dati esistenti raccolti attraverso l'NHSN miglioravano la performance predittiva, rispetto alla stratificazione dell'indice di rischio tradizionale (15).

Una revisione sistematica di 57 studi provenienti sia da Paesi ad alto reddito che da LMIC ha identificato, in un'analisi aggiustata, i seguenti fattori associati ad un aumento del rischio di SSI: indice di massa corporea elevato; un punteggio elevato secondo l'indice NNIS (surveglianza nazionale delle infezioni nosocomiali, USA); ferite gravi; diabete; prolungamento della durata dell'intervento chirurgico (54). Una metanalisi di studi prospettici di coorte suggerisce che il diabete mellito è associato in modo significativo ad un aumento del rischio di SSI (55). In Italia il Protocollo del sistema nazionale di sorveglianza nosocomiale ha identificato in una maggiore durata degli interventi, un punteggio di almeno 3 secondo l'indice della Società Americana di Anestesiologia e una degenera pre-operatoria di almeno 2 giorni come fattori associati ad un aumento del rischio di SSI, mentre le procedure in videoscopia riducono i tassi di SSI (26). Nella Repubblica di Corea, una revisione sistematica mediante analisi multivariate sul peso epidemiologico ed economico delle SSI ha individuato il diabete, la mancata o > 1 ora somministrazione di profilassi antibiotica e il tipo di classificazione delle ferite (contaminate o sporche) come fattori di rischio significativamente associati alle SSI (36). Inoltre, l'indice di rischio NNIS ha individuato come fattori di rischio di SSI nell'artooplastica totale dell'anca: il trauma, la rioperazione e l'età (60-69 anni) (37).

In una recente revisione sistematica, non pubblicata, condotta dall'OMS, sono stati identificati in totale di 14 studi osservazionali (nessun RCT) (56-69) che descrivevano la relazione tra volume di attività chirurgica e rischio di SSI. E' stata rilevata una sostanziale eterogeneità nelle definizioni di volume, nelle procedure chirurgiche analizzate e nella misurazione delle SSI. Sono state quindi eseguite metanalisi distinte per valutare i tassi SSI per volumi di attività ospedaliera elevati vs. medi e bassi, vs. bassi e per volumi di attività chirurgica elevati vs. medi e bassi, vs. bassi. Evidenze di qualità moderata hanno mostrato che le procedure chirurgiche eseguite negli ospedali con volume di attività medio-alto registrano tassi di SSI inferiori rispetto agli ospedali a basso volume (OR: 0,69; 95% CI: 0,55-0,87 e OR: 0,80; 95% CI: 0,69-0,94, rispettivamente). Parimenti, le procedure chirurgiche eseguite da chirurghi con volume di attività medio-alto registrano tassi di SSI inferiori rispetto agli ospedali a basso volume (OR: 0,67; 95% CI: 0,55-0,81 e OR: 0,73;95% CI: 0,63-0,85, rispettivamente) rispetto ai colleghi con volume di attività basso. Tuttavia, le evidenze erano controversie nel confronto tra ospedali ad elevato e medio volume di attività e non è chiaro se esista una relazione lineare tra volume di procedure/chirurgo e tasso di SSI.

Conclusioni

Nonostante i dati robusti sul gravame delle SSI in alcuni Paesi o regioni, stime accurate dell'onere globale in termini di tassi di SSI e risvolti economici rimangono ancora un obiettivo per il futuro. Ad esempio, i dati sulle SSI nello specifico e sulle ICA in generale non sono ancora stati inseriti nell'elenco delle malattie per le quali il peso globale è regolarmente stimato dall' OMS o da altre organizzazioni internazionali che raccogliono i dati sulla salute globale. Anche se i tassi di SSI variano tra Paesi e regioni geografiche, rappresentano un problema importante, significativamente più grave nei Paesi in via di sviluppo. Se i tassi di SSI devono servire come indicatore di qualità e punto di riferimento per le strutture sanitarie, i paesi e le popolazioni, devono essere determinati in modo affidabile, tale da garantire dati robusti per validi
Riferimenti

18. de Lissovoy G, Fraeman K, Hutchins V, Murphy D, Song D, Vaughn BB. Surgical site infection: incidence and impact on hospital

43. Informe de vigilancia de infecciones asociadas a la atencifin en salud. Santiago (Chile): Departamento De Calidad y Formacifin, Programa Control DE IAAS, Ministerio de Salud; 2013.

57. Hervey SL, Purves HR, Guller U, Toth AP, Vail TP, Pietrobon R. Provider volume of total knee arthroplasties and patient outcomes in...

3.2 Sorveglianza delle infezioni del sito chirurgico: definizioni, metodi e impatto

La sorveglianza delle ICA è elemento fondamentale di ogni programma di prevenzione e controllo efficace (1, 2). Tuttavia, definire, rilevare, segnalare e interpretare le ICA, SSI comprese, è impegnativo e richiede competenza, tempo e risorse dedicate.

Definizione di sorveglianza delle SSI

La sorveglianza è definita come "il processo continuo di raccolta sistematica, analisi, interpretazione e valutazione dei dati sanitari, strettamente integrato con la diffusione tempestiva degli stessi a coloro ai quali serve" (3).

<table>
<thead>
<tr>
<th>Criterio</th>
<th>CDC 1988</th>
<th>CDC 1992</th>
<th>SISG</th>
<th>NPS</th>
<th>PHLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuoriuscita di essudato purulento dalla ferita o sua presenza rilevata con osservazione diretta</td>
<td>I</td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Eritema doloroso indicativo di cellulite</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drenaggio purulento</td>
<td></td>
<td>D</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Secrezione purulenta da drenaggio posto sotto lo strato fasciale</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Secrezione purulenta da drenaggio posizionato attraverso una ferita nell’organo / spazio</td>
<td></td>
<td>OS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microorganismi isolati nel liquido o nel tessuto della ferita</td>
<td>I</td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Microorganismi isolati nel liquido o nel tessuto dell’organo/spazio</td>
<td></td>
<td>OS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diagnosi del chirurgo/medico</td>
<td>I/D</td>
<td>Si/Di/OS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Il chirurgo apre intenzionalmente la ferita, a meno che la coltura non sia negativa</td>
<td>I/D</td>
<td></td>
<td>Si/D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deiscenza spontanea della ferita</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Dolore</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Indolenzimento</td>
<td>D</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Febbre > 38° C</td>
<td>D</td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Gonfiore localizzato (edema)</td>
<td></td>
<td>SI</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Arrossamento o margini estesi di eritema</td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Paziente ancora sottoposto a trattamento per una ferita con emissione di pus</td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>oppure ✓</td>
</tr>
<tr>
<td>Riscaldamento</td>
<td></td>
<td>SI</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Ascesso o altre evidenze di infezione riscontrate con l’osservazione diretta</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>

* Riprodotto da Riferimento 4

CDC: Centri per il controllo e la prevenzione delle malattie; SISG: Gruppo di Studio delle Infezioni Chirurgiche; NPS: Indagine Nazionale sulla prevalenza; PHLS: Servizio Laboratori della Sanità Pubblica.

Definizioni CDC 1988: I, infezione della ferita chirurgica D, infezione profonda. Definizioni CDC 1992: SI, infezione superficiale; DI, infezione profonda; OS, organo/spazio. Il SISG e la NPS riconoscono: febbre (>38° C), indolenzimento, edema, margini estesi di eritema oppure se il paziente è ancora sottoposto a trattamento per una ferita.
Scopi della sorveglianza

L'obiettivo principale della sorveglianza è la raccolta dati sui tassi di SSI per ottenere una misura della grandezza del problema. Questi dati devono essere quindi analizzati per identificare e studiare le tendenze, con un'attenta interpretazione dei risultati. Infine, i dati di sorveglianza devono indirizzare l'identificazione di azioni di miglioramento e valutare l'efficacia di questi interventi. In questo contesto, è importante il feedback dei tassi di SSI alle parti interessate.

Si deve fare la sorveglianza?

L'effetto positivo della sorveglianza delle ICA è stato descritto per la prima volta dallo studio di riferimento sull'efficacia di un programma di controllo delle infezioni nosocomiali condotto negli Stati Uniti negli anni '70. In questo trial è stato dimostrato che un programma di prevenzione e controllo delle infezioni con entrambe le componenti può ridurre significativamente i tassi di SSI (5). Importante ricordare che la sorveglianza delle SSI è prevista dalle linee guida OMS per la chirurgia sicura (6). Molti Paesi hanno introdotto l'obbligo della sorveglianza delle ICA, tra cui le SSI, come il Regno Unito e alcuni stati negli USA, mentre altri Paesi effettuano la sorveglianza su base volontaria, come ad esempio la Francia, la Germania e la Svizzera. Tuttavia, vi sono considerevoli differenze relative ai tipi di sorveglianza, così come alla durata per tipologia (7, 8). Sono state create sempre più numerose reti nazionali e "reti di reti", quali il CDC NHSN, la rete di sorveglianza ICA (HAI-Net) di ECDC e il Consorzio internazionale per il controllo delle infezioni nosocomiali. Utilizzando definizioni standardizzate di ICA e soprattutto SSI, queste reti consentono confronti e benchmarking tra ospedali. Una componente essenziale di queste reti di sorveglianza è il feedback ai singoli ospedali, come di seguito illustrato.

È stato ipotizzato che possa verificarsi un "effetto sorveglianza" simile all'effetto Hawthorne nelle sperimentazioni cliniche, cioè il semplice fatto di essere consapevole di essere osservati può indipendentemente condurre ad un miglioramento delle pratiche o ad una più stretta adesione alle linee guida (9). Un altro modo in cui un programma di sorveglianza di successo può diminuire i tassi di SSI è che le risposte fornite all'istituzione possono richiedere indagini sul perché i tassi siano superiori al benchmark. Alcuni indicatori di processo (se non già raccolti) possono quindi identificare le ragioni di una performance sotto-livello e promuovere iniziative locali per migliorare le prestazioni sulla base di questi indicatori.

Ci sono prove contrastanti sul fatto che condurre la sorveglianza come parte di una rete abbia un impatto positivo sui tassi SSI (Tabella 3.2.2). Alcuni studi segnalano una riduzione di successo dei tassi SSI dopo aver partecipato ad una rete di sorveglianza (10-12), mentre per altri non ha sortito alcun effetto (13). Tuttavia, esiste un importante problema metodologico che potrebbe "diluire" la riduzione nel tempo dei tassi di SSI, che è il fatto di inserire in rete ospedali più piccoli senza tenere conto del loro anno di ingresso. Questo ostacolo è stato superato in un'analisi dei dati tedeschi dove gli ospedali sono stati stratificati per anno di partecipazione (9) e da analisi di dati olandesi (14) e svizzeri (13) nelle quali i tassi di SSI sono stati stratificati per tempo di funzionamento della sorveglianza in periodi consecutivi di un anno, utilizzando il primo anno di sorveglianza come riferimento. Gli studi olandesi e tedeschi hanno riportato un calo nella tendenza temporale dei tassi di SSI dopo la sorveglianza, mentre lo studio svizzero non lo ha fatto. Viceversa, come dimostrato negli studi clinici, la sorveglianza intensiva può portare a rilevazioni di SSI più elevate rispetto alle normali condizioni di sorveglianza. Ad esempio, in una recente verifica clinica che confrontava gli agenti antisettici della pelle per il taglio cesareo, il tasso è stato del 4,0% in un ramo e del 7,3% nell'altro (15). Questi tassi sembrano superiori rispetto a quelli disponibili dai più recenti dati ECDC, che mostrano un tasso di SSI del 2,9% (range inter-paese: 0,4% - 6,8%) (16).
Tabella 3.2.2 – Andamento temporale dei tassi di SSI dopo la sorveglianza in una selezione di reti

<table>
<thead>
<tr>
<th>Paese (nome della rete)</th>
<th>Durata della sorveglianza</th>
<th>Procedure</th>
<th>Variazione del tasso di SSI</th>
<th>Riferimento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inghilterra (SSISSF)</td>
<td>5</td>
<td>Ortopedia</td>
<td>Da -64 a -69%</td>
<td>(17)</td>
</tr>
<tr>
<td>Francia (ISO-RAISIN)</td>
<td>8</td>
<td>Varie</td>
<td>-30%</td>
<td>(11)</td>
</tr>
<tr>
<td>Germania (KISS)</td>
<td>4</td>
<td>Varie</td>
<td>-25%</td>
<td>(10)</td>
</tr>
<tr>
<td>Paesi Bassi (PREZIES)</td>
<td>5</td>
<td>Varie</td>
<td>-57%</td>
<td>(14)</td>
</tr>
<tr>
<td>Svizzera (Network regionale)</td>
<td>13</td>
<td>Varie</td>
<td>3% a 22%</td>
<td>(13)</td>
</tr>
<tr>
<td>USA (SENIC)</td>
<td>5</td>
<td>Varie</td>
<td>-35%</td>
<td>(18)</td>
</tr>
</tbody>
</table>

Istituire un sistema di sorveglianza

Secondo l’Associazione statunitense dei professionisti addetti al controllo e all’epidemiologia delle infezioni (20), non esistono "il" metodo o il "metodo giusto" per progettare o attuare la sorveglianza (21). In ogni caso, l’Associazione ha identificato i seguenti requisiti minimi per garantirne la qualità (21):

- Un piano scritto che indica obiettivi, oggetti ed elementi del processo di sorveglianza
- Rigore costante dell’intensità della sorveglianza
- Coerenza negli elementi della sorveglianza (ad esempio, definizioni, metodi di calcolo)
- Risorse umane adeguate (professionisti formati in epidemiologia)
- Servizi informatici, supporto informatico
- Metodi di valutazione.

Affinché un programma di sorveglianza abbia successo, deve esistere un metodo di validazione dei dati che ne garantisca accuratezza e affidabilità (22), in particolare a scopo di benchmarking, come già detto in precedenza (23).

Metodi di conduzione della sorveglianza

Nel campo delle SSI, la maggior parte dei sistemi di sorveglianza hanno come target la chirurgia colorettale e l’artroplastica totale dell’anca e del ginocchio. L’indicatore di outcome più comune è l’incidenza cumulativa di SSI (o tasso di SSI). Il rilevamento di SSI utilizzando metodi di prevalenza è meno affidabile data l’elevata percentuale di infezioni che si manifestano dopo le dimissioni.

Per ogni dato periodo, il denominatore è rappresentato dal numero totale di procedure all’interno di ciascuna categoria. Anche il numero dei pazienti può essere utilizzato come denominatore, ma è meno preciso perché nello stesso paziente può verificarsi più di una infezione. Il numeratore sarà il numero di SSI nello stesso periodo. Per ogni paziente vengono registrati i dati demografici (età, sesso, timing e scelta della profilassi antimicrobica, punteggio secondo la Società Americana degli Anestesisti, durata dell’operazione e classe della ferita contaminata), oltre al sito dell’infezione e il tipo di SSI (superficiale, profondo, d’organo o cavità profonde) per coloro che ne sono interessati. Può essere utile anche il collegamento ai dati microbiologici.

Il gold standard è una sorveglianza prospettica diretta, sebbene sia costosa in termini di tempo, intensità di impegno e risorse economiche (24). Le raccomandazioni del CDC descrivono metodi di sorveglianza indiretta (sensibilità dell’84-89%; specificità 99,8%) come combinazione di:

1. Riesame dei rapporti di microbiologia e delle cartelle cliniche del paziente.
2. Rilevazioni sul chirurgo o sul paziente
3. Screening per la riammissione e/o ritorno in sala operatoria.
4. Altre informazioni, come le diagnosi e le procedure codificate, le relazioni operatorie o gli ordini di antimicrobici. (24)
Importanza della sorveglianza post-dimissioni

Si stima che una percentuale significativa di SSI venga rilevata dopo le dimissioni del paziente. Questa proporzione varia a seconda degli ambiti e delle diverse definizioni, ma è stata stimata tra il 13% e il 71% (25). Il fatto che la durata del ricovero sia costantemente diminuita, ha probabilmente contribuito negli ultimi decenni a spostare il peso del problema infezioni dagli ospedali ai servizi ambulatoriali. Inoltre, le infezioni associate agli impianti possono non manifestarsi fino a un anno dopo l’intervento. Per questa ragione, molte reti raccomandano la sorveglianza post-dimissioni. Non esiste un gold standard noto per le procedure di sorveglianza post-dimissioni e una revisione sistematica ha individuato solo 7 report di studi che confrontano diversi metodi di sorveglianza (26). A causa delle differenze nella raccolta e classificazione dei dati, nonché di informazioni mancanti per quanto riguarda i criteri diagnostici, non è stata possibile alcuna nessuna sintesi sulla sorveglianza post-dimissioni. Gli autori hanno concluso che sono necessarie ulteriori ricerche per quanto riguarda la misurazione delle SSI post-dimissione ospedaliera.

Ci sono state recenti controversie riguardanti la decisione del CDC di ridurre a 90 giorni il periodo di sorveglianza post-dimissione invece di un anno dopo determinate procedure (27). Questa modifica mirava a semplificare la sorveglianza post-dimissione e ridurre i ritardi di feedback, ma non è stata finora universalmente adottata (28). Una relazione ha confrontato i dati prospettici storici della sorveglianza delle SSI provenienti da una rete USA applicando in retrospettiva le nuove definizioni del CDC (29). Gli autori hanno scoperto che il 9,6% delle SSI rilevate secondo la precedente definizione finiva col non esserlo con le nuove; il 28,8% di queste SSI non rilevate riguardavano le protesi d’anca e ginocchio. La percentuale di SSI perse variava per procedura, ma era alta per la protesi d’anca (8,8%) e del ginocchio (25,1%). Un’altra relazione della rete di sorveglianza SSI olandese ha analizzato l’influenza della durata e del metodo di sorveglianza post-dimissioni sui tassi di SSI per determinate procedure (30). La percentuale di SSI perse è stata variabile, ma era del 6% e del 14% rispettivamente per la protesi d’anca e del ginocchio. Ma, ancora più importante, lo studio ha mostrato che il nuovo metodo CDC di effettuare la sorveglianza post-dimissioni era associato ad un rischio maggiore di non rilevare una SSI se confrontato con il metodo precedente.

Come rapportare i dati della sorveglianza

Anche se la maggior parte dei sistemi di sorveglianza riporta i tassi di SSI, in letteratura si è dibattuto su quale sia la scelta migliore di indicatore di risultato.

Alcuni autori sostengono che la scelta più adatta sia la densità di incidenza di SSI in ospedale, tenendo conto delle diverse durate dei ricoveri e dei diversi metodi di sorveglianza post-dimissione (31). Questo indicatore richiede la registrazione della data di dimissione del paziente. Al fine di regolare le variazioni nel case-mix, si raccomanda di presentare tassi di SSI aggiustati al rischio oltre ai tassi grezzi (32). Il metodo più comunemente utilizzato per l’aggiustamento al rischio è l’indice NNIS, il cui obiettivo è prevedere il verificarsi di una SSI in un dato paziente (33). Questo indice di rischio è stato aggiornato e include fattori specifici per procedura, che migliorano il suo potere predittivo, ma non è ampiamente usato (28,34). Da notare che raccogliere i dati per l’indice di rischio NNIS può essere difficile in realtà con risorse limitate, dove le informazioni riportate nelle cartelle cliniche dei pazienti sono scarse. Per esempio, in una recente verifica sistematica condotta dall’OMS, solo 14 dei 231 studi di sorveglianza SSI di Paesi in via di sviluppo riportavano di aver utilizzato l’indice di rischio NNIS (OMS, dati non pubblicati).

Alcuni sistemi di sorveglianza riportano percentuali di infezioni standardizzate, ossia il rapporto tra i tassi osservati e quelli previsti (35, 36). Un rapporto superiore a 1,0 indica che ci sono state più SSI rispetto a quanto previsto, mentre un rapporto inferiore a 1,0 indica il contrario (36). Il modo più semplice per calcolare il numero previsto di SSI è moltiplicare il numero di interventi per ciascuna categoria per il tasso SSI e dividere il risultato per 100. Questo rappresenta il case-mix ed è quindi una misurazione sommaria adeguata al rischio (36).

Altri sistemi di sorveglianza (Regno Unito, Svizzera), per migliorare la precisione delle stime dei tassi di SSI, utilizzano dei grafici a imbuto, che dipendono dal tempo e risorse. I vincoli possono essere finanziari.
e/o di disponibilità di personale addestrato dedicato.

I dati di sorveglianza devono essere validati e supervisionati da professionisti addetti al controllo delle infezioni e/o epidemiologi. Un importante vincolo molto comune alla sorveglianza ICA nei paesi in via di sviluppo è la mancanza di un supporto microbiologico affidabile. Tuttavia, questo può avere un impatto meno significativo sulla sorveglianza delle SSI dato che una diagnosi clinica può spesso essere fatta senza conferma microbiologica. Quindi, per un sistema di sorveglianza di successo, è essenziale la corretta raccolta dei dati clinici (preferibilmente per via elettronica). Un’altra difficoltà nei paesi a basso reddito è l’elevata perdita di follow-up del paziente per la sorveglianza post-dimensioni a causa delle lunghe distanze tra i servizi di chirurgia e i luoghi di residenza dei pazienti e/o delle ristrettezze economiche degli stessi. Basandosi su alcune interessanti pubblicazioni (38), l’OMS ha sviluppato un approccio adattato alla sorveglianza delle SSI post-dimensioni, consegnando al paziente prima delle dimensioni le istruzioni che gli consentono di riconoscere i segni dell’infezione e mantenere il follow-up telefonico. Infine, in assenza di programmi efficaci di controllo delle infezioni e di associazioni (locali e nazionali), è difficile introdurre un sistema di sorveglianza sostenibile.

Uso della sorveglianza per il benchmarking

L’uso dei dati di sorveglianza delle ICA, comprese le SSI, è stato sostenuto per scopi di benchmarking (23). Il benchmarking può essere utilizzato per diversi scopi, anche per la pubblicazione di “classifiche “come nel Regno Unito e negli Stati Uniti (39). Inoltre, negli Stati Uniti serve anche come base per modificare i pagamenti ospedalieri alle strutture pagate da Medicare (24). Ci sono vantaggi e svantaggi nel benchmarking perché ci sono importanti insidie che vanno attivamente evitate. E’ possibile che i sistemi di sorveglianza che utilizzano metodi più intensivi e sensibili e che quindi rilevano tassi più elevati di SSI possano essere ingiustamente penalizzati.

Anche in presenza di definizioni uniformi e standardizzate, molti studi hanno dimostrato che l’accordo inter-rater per le SSI è piuttosto basso (40-42). Uno studio lo ha valutato accordo presentando 12 vignette di casi di sospetta SSI a ICI e chirurghi di 10 Paesi europei (41). Si è scoperto che c’era scarso accordo sulla diagnosi di SSI e sul tipo di SSI, con variazioni tra e all’interno dei paesi. Una analisi dei dati presentati da 11 paesi alla rete ECDC HELICS (Hospitals in Europe for Infection Control through Surveillance) ha dimostrato che c’era una variazione sostanziale non solo in termini di case-mix (misurato secondo il punteggio dell’indice di rischio NNIS), ma anche nella segnalazione di SSI (percentuali interne altamente variabili delle SSI superficiali che vanno dal 20 all’80%) ma anche nella durata e consistenza del follow-up postoperatorio (31).

Un audit sui metodi di sorveglianza delle SSI in Inghilterra ha di mostrato che differenze nei metodi di raccolta dei dati e qualità degli stessi corrispondono a grandi differenze nei tassi di SSI (43). Ciò che colpisce è che anche in presenza di una sorveglianza obbligatoria, con un protocollo nazionale chiaramente definito, una percentuale sostanziale degli intervistati (15%) ha usato definizioni alternative (43).

Conclusioni

Idealmente, la sorveglianza delle SSI dovrebbe essere parte integrante dei programmi di prevenzione e controllo delle infezioni nelle strutture sanitarie ed una priorità per la salute pubblica in tutto il mondo. Tuttavia, si deve essere prudenti quando si interpretano i dati sulle SSI, in particolare quando si fanno confronti, a causa di una possibile eterogeneità delle definizioni utilizzate, dei metodi di sorveglianza, della stratificazione del rischio e del reporting. Ulteriori studi sono necessari per determinare i metodi diagnostici più sensibili per le SSI, sia per i pazienti ricoverati che come parte della sorveglianza post-dimensione, e i più efficaci metodi di raccolta dati. È della massima importanza sviluppare e testare definizioni e metodi di sorveglianza adattati per le situazioni con risorse limitate. Anche il ruolo degli algoritmi informatizzati deve essere ulteriormente valutato. Allo stesso modo, bisogna chiarire il ruolo dei dati della sorveglianza SSI a scopo di benchmarking, soprattutto quando si tratta di rapporti pubblici.

Riferimenti

3.3 Importanza di un ambiente pulito in sala operatoria e decontaminazione delle apparecchiature mediche e degli strumenti chirurgici

3.3.1 Ambiente

Per molti anni la contaminazione ambientale è stata considerata meno importante di molti altri fattori che contribuiscono alle ICA. Evidenze recenti dimostrano invece che un ambiente di cura contaminato svolge un ruolo significativo nella trasmissione di microrganismi (1,2). È essenziale che la sala operatoria sia pulita completamente su base giornaliera. È inoltre necessaria una corretta ventilazione meccanica per prevenire la contaminazione della ferita chirurgica da aria non filtrata prelevata in sala e per ridurre ed eliminare i microorganismi presenti sulle squame di pelle (3). Il capitolo 4.23 di queste linee guida contiene una guida specifica sui sistemi di ventilazione più indicati in sala operatoria ed una raccomandazione evidence-based sul flusso laminare.

Pulizia ambientale e gestione dei rifiuti in sala operatoria

La pulizia consiste nella rimozione di polvere, sporczia e contaminanti sulle superfici ambientali a garanzia di un ambiente igienico e sano sia per i pazienti che per il personale. L’ambiente deve essere ben pulito tenendo conto dei principi di buona pratica (Box 3.3.1). I requisiti di pulizia per le varie superfici sono dettagliati nella tabella 3.3.1. All’inizio di ogni giorno, per rimuovere polvere e lanugine, tutte le superfici piane devono essere pulite con un panno umido pulito che non lasci pelucchi. Tra un intervento e l’altro si devono pulire le superfici toccate con le mani (Figura 3.3.1) e quelle che possono essere entrate in contatto con il sangue o i fluidi dei pazienti, prima con un a soluzione detergente e poi disinfettate secondo la politica ospedaliera e lasciate asciugare.

Box 3.3.1 – Principi generali per la pulizia ambientale

- La pulizia è il primo passo fondamentale che precede qualsiasi processo di disinfezione per rimuovere sporco, detriti ed altro materiale.
- Per una pulizia efficace bisogna utilizzare una soluzione con detergente neutro che rimuove lo sporco e migliora la qualità della pulizia impedendo la formazione di biofilm, aumentando così l’efficacia dei disinfettanti chimici.
- Se si utilizzano disinfettanti, devono essere preparati e diluiti secondo le istruzioni del produttore. Concentrazioni troppo elevate e/o troppo basse riducono l’efficacia dei disinfettanti. Inoltre, elevate concentrazioni di disinfettante possono danneggiare le superfici.
- La pulizia deve sempre iniziare dalle aree meno sporche (pulito) verso le zone più sporche (sporco) e dal livello superiore verso il basso in modo che i detriti possano cadere sul pavimento che viene pulito per ultimo (4).
- Le soluzioni detergenti e/o disinfettanti devono essere eliminate dopo ogni uso.
- Evitare di metodi di pulizia che producono nebbie, aerosol o dispersione della polvere, come la spazzatura a secco dei pavimenti (scope, ecc), la spolveratura con panni asciutti, gli spray.
- Il monitoraggio batteriologico di routine per valutare l’efficacia della pulizia ambientale non è necessario, ma può essere utile per identificare la potenziale fonte di un focolaio e/o per fini didattici (5).
<table>
<thead>
<tr>
<th>Tipo di superficie</th>
<th>Definizione</th>
<th>Requisiti per la pulizia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Superficie con contatto manuale frequente</td>
<td>Qualsiasi superficie che venga frequentemente toccata con le mani</td>
<td>Richiede particolare attenzione e una pulizia più frequente. Dopo un'accurata pulizia,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>considerare l'uso di disinfettanti appropriati per decontaminare queste superfici.</td>
</tr>
<tr>
<td>Superfici con contatto manuale minimo</td>
<td>Contatto minimo con le mani. Non in stretto contatto con il paziente e/o le</td>
<td>Richiede una pulizia su base regolare con solo detergente o quando è sporco o si</td>
</tr>
<tr>
<td>(pavimenti, pareti, soffitti, davanzali delle</td>
<td>sue immediate vicinanze.</td>
<td>verificano sversamenti. Necessaria anche a seguito della dimissione del paziente dalla</td>
</tr>
<tr>
<td>finestre, ecc.)</td>
<td></td>
<td>struttura.</td>
</tr>
<tr>
<td>Uffici amministrativi</td>
<td>Nessun contatto con i pazienti</td>
<td>Normale pulizia domestica con solo detergente.</td>
</tr>
<tr>
<td>Servizi igienici</td>
<td>--</td>
<td>Pulire la zona servizi igienici almeno due volte al giorno e ogniqualvolta si renda</td>
</tr>
<tr>
<td></td>
<td></td>
<td>necessario.</td>
</tr>
<tr>
<td>Attrezzature mediche e altre</td>
<td>--</td>
<td>Richiedono una pulizia secondo protocolli scritti (per esempio: quotidiana, settimanale,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>dopo ogni utilizzo, ecc.). Ciò comprende l'uso di adeguati dispositivi di protezione</td>
</tr>
<tr>
<td></td>
<td></td>
<td>individuale, metodi di pulizia conformi per il tipo di superficie, programmazioni della</td>
</tr>
<tr>
<td></td>
<td></td>
<td>pulizia etc. Le cadenze e le procedure devono essere coerenti e aggiornate su base</td>
</tr>
<tr>
<td></td>
<td></td>
<td>regolare e a tutto il personale addetto alla pulizia devono essere fornite istruzioni e</td>
</tr>
<tr>
<td></td>
<td></td>
<td>formazione. Per garantire che gli oggetti non vengano danneggiati dall'uso di disinfettanti,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>si deve fare riferimento alle istruzioni del produttore delle apparecchiature mediche.</td>
</tr>
<tr>
<td>Superfici contaminate da sangue o altri fluidi</td>
<td>Tutte le aree che sono visibilmente contaminate da sangue o altro materiale</td>
<td>Richiede pulizia e disinfezione tempestive (vedi sotto).</td>
</tr>
<tr>
<td>corporei</td>
<td>potenzialmente infetto.</td>
<td></td>
</tr>
</tbody>
</table>
Tutti i liquidi fuoriusciti devono essere accuratamente rimossi, le superfici pulite e disinfettate secondo le procedure adottate dall’ospedale. Per eseguire questo compito devono essere calzati guanti domestici pesanti. Se è probabile una contaminazione del corpo, utilizzare un grembiule di plastica monouso. Non è necessario indossare camice e maschera. Se esiste il rischio di fuoriuscita di sostanze chimiche, va preso in considerazione l’uso di una maschera facciale o di occhiali, a seconda del tipo di prodotti chimici utilizzati per la disinfezione. Tutti i rifiuti della sala operatoria devono essere raccolti e chiusi in contenitori a tenuta stagna e rimossi; le garze sporche devono essere collocate in borse di plastica per la raccolta. Tutti i dispositivi medici riutilizzabili vanno inviati per il ricondizionamento alla centrale di sterilizzazione o unità di decontaminazione. Il tavolo operatorio deve essere pulito e lavato con una soluzione detergente, sia il materasso che la superficie. Tutte le superfici che sono state in contatto con un paziente o con i suoi fluidi corporei devono essere pulite e disinfettate utilizzando un’apposita soluzione disinfettante secondo i protocolli locali.

Al termine di ogni giornata è necessario eseguire una procedura di pulizia totale. Tutte le aree dell’unità, lavandini, lavatoi e spogliatoi, corridoi e attrezzature devono essere puliti accuratamente, indipendentemente dal fatto che siano stati utilizzati o meno durante le precedenti 24 ore. Le garze sporche devono essere rimosse in contenitori chiusi e a tenuta stagna. Tutti i contenitori dei rifiuti contaminati devono essere rimossi e sostituiti con contenitori puliti. I contenitori per taglienti devono essere chiusi e rimossi quando sono pieni per tre quarti. Tutte le superfici devono essere pulite dall’alto verso il basso utilizzando un detergente, seguito da un disinfettante se necessario, e poi lasciate asciugare. Per ridurre la contaminazione microbica di superfici ambientali come le pareti, i soffitti e i pavimenti, queste devono essere pulite accuratamente dall’alto verso il basso con un detergente e lasciate asciugare. L’uso routinario di un disinfettante o la fumigazione della sala non sono necessari, neanche dopo un intervento contaminato.

3.3.2 Decontaminazione dei dispositivi medici e degli strumenti chirurgici

La decontaminazione è una questione complessa e altamente specializzata. Questa sezione fornisce una descrizione sintetica della decontaminazione e del ricondizionamento dei dispositivi medici riutilizzabili e delle attrezzature per la cura dei pazienti. Nei Paesi con programmi definiti, la decontaminazione è una
specialità di per sé ed è un servizio indipendente, di qualità garantita, fornito alle strutture. L'intero processo di decontaminazione è rigorosamente regolamentato e disciplinato da linee guida e standard chiaramente definiti, stabiliti a livello sia nazionale che internazionale (International Organization for Standardization). Ciò assicura la validazione dei processi e la sicurezza del paziente (7-10).

Nei Paesi a reddito medio-basso, la scienza della decontaminazione è agli albori ed esistono pochi programmi strutturati, come è risultato evidente durante la recente epidemia di Ebola. In questi Paesi, dove la mancanza di strumenti sterili e/o della disponibilità di sale operatorie adeguatamente progettate e dipartimenti sterili ha un impatto notevole, le SSI possono essere definite come infezioni associate alla chirurgia (11,12). In risposta a questa necessità, l'OMS /PAHO (Organizzazione Panamericana per la Salute) ha prodotto un manuale di decontaminazione e ricondizionamento per strutture sanitarie (13) per sostenere e guidare le attività operative per migliorare gli standard di assistenza.

Negli USA, il termine decontaminazione non comprende la pulizia e si riferisce a tutte le fasi successive. Nel Regno Unito e in Europa, "decontaminazione" si riferisce all'intero processo, compresa la pulizia, e in questa accezione viene utilizzato in questo capitolo (vedi tabella 3.3.2).

<table>
<thead>
<tr>
<th>Tabella 3.3.2. Glossario dei termini</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decontaminazione</td>
</tr>
<tr>
<td>Pulizia</td>
</tr>
<tr>
<td>Disinfezione</td>
</tr>
<tr>
<td>Sterilizzazione</td>
</tr>
</tbody>
</table>

Elementi essenziali della decontaminazione

Tutti i dispositivi medici che vengono ricondizionati, come gli strumenti chirurgici, devono essere sottoposti a una rigorosa pulizia prima delle procedure di decontaminazione e sterilizzazione. Mettere a bagno in disinfettanti di qualsiasi tipo i dispositivi medici contaminati prima della pulizia non è né sufficiente né raccomandato (14). Indipendentemente dal tipo di procedura operativa, i processi di decontaminazione nel ricondizionamento degli strumenti chirurgici e di altri dispositivi medici sono gli stessi. Il ciclo di vita della decontaminazione illustra (Figura 3.3.2) le caratteristiche salienti della decontaminazione, con ogni passo importante quanto il successivo.
Valutazione del rischio degli strumenti contaminati
Il rischio di trasferire i microrganismi da strumenti e attrezzature dipende dai seguenti fattori:

- la presenza di microrganismi, la quantità e la virulenza;
- il tipo di procedura che verrà eseguita (invasiva o non invasiva);
- il sito del corpo dove verrà utilizzato lo strumento o l'attrezzatura.

La valutazione del rischio nel ricondizionamento degli strumenti chirurgici è stata descritta al meglio da Spaulding (15) e da allora è poi stata modificata. Dopo una pulizia profonda, la scelta se disinfettare o sterilizzare dipende dalla stabilità al calore del dispositivo. Inoltre, il sito del corpo dove lo strumento o l'attrezzatura sarà utilizzato/verrà in contatto è determinante per decidere se sia sufficiente la disinfezione ad alto livello o sia necessaria la sterilizzazione. Secondo la classificazione Spaulding, i dispositivi medici sono classificati come critici, semicritici o non critici a seconda del grado di rischio di trasmettere infezioni (tabella 3.3.3).
Tabella 3.3.3. Classificazione Spaulding della decontaminazione degli strumenti (15)

<table>
<thead>
<tr>
<th>Categoria</th>
<th>Definizione</th>
<th>Livello di azione antimicrobica</th>
<th>Metodo di decontaminazione</th>
<th>Esempio di oggetto/strumento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elevata (utilizzo critico)</td>
<td>Dispositivi medici utilizzati per penetrare la pelle, una membrana mucosa o una cavità corporea sterile.</td>
<td>Uccisione di tutti i microrganismi.</td>
<td>Sterilizzazione (solitamente a caldo se possibile oppure chimica se sensibile al calore).</td>
<td>Ferri chirurgici, impianti, protesi e device, cateteri urinari e cardiaci, aghi e siringhe, garze, suture, kit per il parto, strumenti dentistici, broncoscopi rigidi, cistoscopi, ecc..</td>
</tr>
<tr>
<td>Intermedia (utilizzo semi-critico)</td>
<td>Dispositivi medici a contatto con membrane mucose o cute non integre</td>
<td>Uccisione di tutti i microrganismi, fatta eccezione per le spore batteriche in numero elevato</td>
<td>Disinfezione di alto livello a caldo o chimica (in ambiente controllato con il minimo rischio di tossicità per l’uomo).</td>
<td>Attrezzì per la terapia respiratoria e per l’anestesia, endoscopi flessibili, specula vaginali, padelle e pappagalli riutilizzabili, bacinelle dei pazienti, ecc.</td>
</tr>
<tr>
<td>Bassa (utilizzo non critico)</td>
<td>Solo contatto con la cute intatta</td>
<td>Uccisione dei batteri vegetativi, dei funghi e dei virus capsulati</td>
<td>Livello di disinfezione basso (Pulizia)</td>
<td>Fasce per la rilevazione della pressione, stetoscopi, conduttori per ECG, ecc. Superfici ambientali, compreso il tavolo e le altre superfici della sala operatoria</td>
</tr>
</tbody>
</table>
Struttura di decontaminazione

Spazio di lavoro
Tutto il riciclaggio di dispositivi medici deve avvenire nella centrale di sterilizzazione, che dovrebbe essere un dipartimento distinto e separato, o in una zona di decontaminazione designata. Molti Paesi hanno aree di decontaminazione centralizzate (dipartimento di sterilizzazione centralizzato) e forniscono servizi alle sale operatorie, ai reparti e alle aree cliniche. I processi di decontaminazione centralizzati rendono meno costoso il processo, ne aumentano la sicurezza e ne migliorano la qualità. Deve anche essere attivato un sistema strutturato per il trasporto delle apparecchiature pulite e di quelle usate. Da notare che, quando lo spazio dell’area di decontaminazione è molto limitato (di solito una sola stanza) e si prevede che il processo di ricondizionamento avrà luogo in uno spazio più piccolo e meno appropriato, con vecchie attrezzature e superfici sovrapposte, è altamente probabile il rischio di contaminazione di vassoi puliti. La decontaminazione dei dispositivi medici nelle aree cliniche non è raccomandata.

Procedure operative standard per la decontaminazione e la sterilizzazione
Tutte le unità di decontaminazione devono disporre di politiche e procedure scritte per ogni fase del processo di decontaminazione, che devono includere:

- Qualificazione, istruzione/formazione professionale formale e valutazione della competenza;
- pulizia;
- disinfezione ad alto livello (tutti i processi disponibili);
- preparazione e confezionamento dei dispositivi;
- procedure di funzionamento dello sterilizzatore;
- monitoraggio e documentazione di sostanze chimiche o parametri del ciclo;
- protocolli sanitari e di sicurezza sul posto di lavoro specifici per lo sterilizzatore chimico;
- movimentazione, stoccaggio e smaltimento dello sterilizzatore secondo le istruzioni all’uso del produttore e la regolamentazione locali;
- uso di indicatori fisici, chimici e/o biologici;
- sistemi per la qualità;
- validazione di pulizia, disinfezione e sterilizzazione.

Disposizioni per l’igiene delle mani e delle attrezzature di protezione individuale
All’entrata e all’uscita dei servizi di sterilizzazione o di decontaminazione devono essere disponibili stazioni per l’igiene delle mani. In ogni ingresso del reparto di servizi sterili o nell’area di decontaminazione devono essere forniti adeguati dispositivi di protezione individuale. L’attrezzatura protettiva personale è progettata per essere monouso, ma in alcune strutture carenti di risorse viene riutilizzata. Ciò è accettabile, a condizione che l’attrezzatura protettiva personale, ad esempio il grembiule, venga ripulita con un panno umido e lasciata asciugare. Il grembiule va quindi strofinato con alcol al 70% e lasciato asciugare. Al punto di uscita deve essere disponibile il bidone dei rifiuti, preferibilmente vicino al lavandino per le mani.

Flusso di lavoro
Durante il processo di ricondizionamento dei dispositivi medici devono esserci aree chiaramente demarcate, come la zona sporca in cui vengono ricevuti e puliti, la zona controllo-assemblaggio-imballaggio, le aree di sterilizzazione o disinfezione ad alto livello e, infine, quelle dedicate allo stoccaggio delle confezioni sterili e al loro trasporto. Si raccomanda che queste aree siano fisicamente demarcate per evitare la contaminazione da sporco a pulito. Quando ciò non è possibile per mancanza di spazio, devono essere posti ostacoli per consentire solo il movimento unidirezionale del personale e delle attrezzature da sporco a pulito senza alcuna possibilità di sovrapposizione.

Trasporto di dispositivi medici usati
Una volta che i dispositivi sono stati utilizzati nell’area clinica, come in sala operatoria, devono essere preparati per il trasporto al reparto di sterilizzazione, contando e raccogliendo i dispositivi, sciacquandoli sotto acqua corrente fredda, eliminando l’eccesso di acqua e mettendoli in un contenitore o un vassoio chiuso, che li manterrà umidi fino alla rimozione. Questi vassoi (e la relativa check-list di accompagnamento) devono essere trasportati in un carrello robusto, preferibilmente con i lati chiusi, nell’area di decontaminazione. Non si consiglia di immergere i dispositivi medici in disinfettante prima della pulizia o durante il trasporto, poiché esiste il pericolo di scaricare liquidi contaminati (13) (Box 3.3.2). I dispositivi usati devono essere ricevuti, controllati e ordinati per la pulizia nell’area “sporca”. La pulizia è normalmente effettuata manualmente o con metodi automatizzati.
Box 3.3.2 - Raccomandazioni sull’immersione degli strumenti nel disinfettante prima della pulizia

Non immergere gli strumenti nel disinfettante prima di averli puliti.

Non è raccomandato mettere in ammollo gli strumenti in una soluzione di ipoclorito allo 0,5% o in altro disinfettante prima di averli puliti per i seguenti motivi:

- Si possono danneggiare/corrodere gli strumenti.
- Il disinfettante può essere disattivato dal sangue e dai fluidi corporei, creando una sorta di contaminazione batterica e la formazione di biofilm.
- Il trasferimento di strumenti contaminati immersi nel disinfettante chimico all’area di decontaminazione può mettere a rischio i lavoratori e portare ad una manovra inappropriata e un danno accidentale.
- L’ammollo può contribuire allo sviluppo della resistenza microbica ai disinfettanti.

Pulizia manuale

La pulizia manuale richiede operatori ben addestrati che indossino DPI adeguati (grembiuli impermeabili, guanti per le pulizie domestiche pesanti, mascherine per proteggere le membrane mucose e copricapo [facoltativo]), diluiscono accuratamente il detergente secondo le linee guida del produttore, aprano tutte le cerniere dei dispositivi e puliscano l’oggetto tenendolo sotto la superficie dell’acqua (temperatura dell’acqua non oltre i 50° C) e spazzolandolo con un pennello morbido in nylon per rimuovere i detriti. Per controllarne la pulizia, deve essere effettuata una ispezione visiva delle cerniere, dei denti e dei bordi serrati. Non c’è alcun controllo di validazione della pulizia manuale a parte il rilevamento delle proteine, che è costoso. Per pulire i dispositivi a lume si usano pistole ad acqua o ad aria pressurizzata.

Pulizia automatizzata

Ricondizionare i dispositivi medici con una lavatrice disinfettatrice è più sicuro e di solito più efficace. I dispositivi vengono puliti utilizzando getti d’acqua, poi lavati con detergente e acqua calda, seguiti da un ciclo di disinfezione termica (alcune macchine hanno anche un ciclo di asciugatura). Il carico è fondamentale, anche se alcune disinfettatrici sono in grado di ricondizionare fino a 60 vassoi all’ora. La cosa più importante è che ogni ciclo è validato secondo parametri fisici e biologici (13).

Ispezione, assemblaggio e impacchettamento

Utilizzando una lente di ingrandimento e una buona illuminazione, i dispositivi puliti vengono accuratamente controllati per confermarne la pulizia e l’idoneità all’uso e poi riassemblati. Se il dispositivo risulta non pulito, viene restituito per ripetere la procedura; i dispositivi danneggiati vengono sostituiti e il vassoio completato è avvolto per la sterilizzazione. L’imballaggio è di solito fatto con un sacco doppio da sterilizzazione per i vassoi chirurgici o con buste per gli articoli singoli. Il materiale da imballaggio deve essere robusto, permeabile al vapore ma non ai liquidi e deve proteggere la sterilità del pacco prima dell’uso.

Metodi di decontaminazione

Sterilizzazione a vapore

La maggior parte dei dispositivi chirurgici sono resistenti al calore e quindi il vapore è ovunque l’agente sterilizzante preferito. È poco costoso, efficace, facile da mantenere e ampiamente disponibile rispetto agli sterilizzanti chimici. Ci sono diversi tipi di autoclavi/sterilizzatrici. Tutte lavorano in base allo stesso principio di conversione dell’acqua in vapore e mantenendo il vapore (saturato) appena sotto il punto di ebollizione in modo che vi sia il massimo del calore (latente) in stato semi-gassoso. Il vapore entra in contatto con il carico nella camera e rilascia il calore, con conseguente sterilizzazione. Il tempo di contatto con i dispositivi è fondamentale ed è conosciuto come “tempo di esposizione”.

Tipi di autoclave

- Le autoclavi a vapore con pre-vuoto sono le più utilizzate e sono adatte per la sterilizzazione di strumenti puliti impacchettati, camici, teli chirurgici, asciugamani e altri materiali asciutti utilizzati in chirurgia. La rimozione dell’aria è parte del ciclo e quindi sono adatte per i dispositivi medici con lumen e per i materiali porosi.
• **Le autoclavi a spostamento** (di gravità) sono progettate per la sterilizzazione di rifiuti, soluzioni e strumenti a rischio biologico. Oggi sono obsolete e presentano molti inconvenienti. Non garantiscono la sterilità e sono meno affidabili di quelle con pre-vuoto. La rimozione dell’aria è per spostamento di gravità e non sono adatte per i dispositivi medici con lumen.

• **Autoclavi a vapore non-vacuum** : a volte si utilizzano sterilizzatrici da banco, ma queste sono indicate soltanto per un numero relativamente contenuto o per strumenti semplici. Possono essere utilizzate negli ambulatori, negli studi dentistici e in alcune strutture per la pianificazione famigliare ma non devono essere prese in considerazione per l’utilizzo in sala operatoria. Non sono indicate neppure per la sterilizzazione di oggetti con lumen.

Metodi automatici di sterilizzazione chimica (a bassa temperatura)

La sterilizzazione con gas chimico (a bassa temperatura) viene utilizzata per i dispositivi sensibili al calore e all’umidità. Va notato che questi metodi sono costosi sia come installazione sia come gestione. La meccanica è complessa e, se si utilizza questo metodo, è necessario disporre di personale ben addestrato. La sterilizzazione chimica manuale non è raccomandata perché il processo non può essere controllato e creare problemi di salute occupazionale.

La sterilizzazione con gas deve essere eseguita in camere con cicli automatici che garantiscono sia la sicurezza dell’utente che la riuscita del processo. La compatibilità delle attrezzature mediche varia a seconda del metodo di sterilizzazione a bassa temperatura. Si possono utilizzare una serie di sostanze chimiche diverse, per esempio: l’ossido di etilene, il gas/plasma di perossido di idrogeno, l’ozono, la formaldeide a bassa temperatura o in vapore.

Sistema di sterilizzazione immediata o sterilizzazione “lamp”

Sterilizzazione istantanea o sterilizzazione "lampo" è un termine comune che descrive la sterilizzazione veloce di strumenti chirurgici non porosi e/o non cannulati, non confezionati, per mezzo di una autoclave a spostamento posizionata vicino al punto dove gli strumenti saranno immediatamente utilizzati. In passato, la sterilizzazione "lamp" era il metodo più utilizzato per fornire strumenti sterili per la chirurgia. In sala operatoria sono solitamente installate speciali autoclavi ad alta velocità per trattare strumenti non avvolti e strumenti per uso urgente. Ad esempio, l’unico ferro disponibile è caduto sul pavimento nel mezzo dell’intervento: questo strumento deve essere sterilizzato in fretta. Questi sterilizzatori operano a 134° C per 3-10 minuti. La sterilizzazione "lamp" restituisce in sala operatoria strumenti bagnati e molto caldi. Si noti che la sterilizzazione "lamp" non deve mai sopperire ad una mancanza di materiali o strumenti necessari per un intervento chirurgico programmato.

Se si deve utilizzare un sistema di sterilizzazione immediata, devono essere soddisfatte le seguenti condizioni:

- Le attività devono garantire una corretta pulizia, ispezione e disposizione degli strumenti prima della sterilizzazione.
- Il posizionamento della zona di sterilizzazione garantisce la consegna diretta degli articoli sterilizzati al punto di utilizzo.
- Sono sviluppate, seguite e verificate procedure per garantire l’asetticità degli strumenti e la sicurezza del personale nel corso del trasferimento degli articoli sterilizzati dall’autoclave al punto di utilizzo.

Validazione

Solitamente nelle centrali di sterilizzazione, è il processo e non la procedura ad essere testato e validato per garantirne l’alta qualità e l’affidabilità. Ci sono sia metodi semplici che complessi per verificare che il pacchetto chirurgico sia stato sottoposto ad un corretto processo di decontaminazione. La validazione del processo di sterilizzazione deve svolgersi ad ogni passaggio e può essere abbastanza confondente per il personale di servizi di sterilizzazione. Per i dettagli, fare riferimento al
Manuale OMS / PAHO di decontaminazione e di ricondizionamento per strutture sanitarie (13).

Strumenti a noleggio

È pratica comune noleggiare i dispositivi medici costosi utilizzati per le operazioni -come gli strumenti per l’ortopedia, la neurologia, gli impianti e i trapianti- da aziende fornitrici e portarli in sala operatoria. Spesso queste ditte consegnano i set direttamente in sala e li ritirano sporchi, evitando così la centrale di sterilizzazione. Questi dispositivi medici vengono utilizzati in diversi ospedali e la più grande preoccupazione è che spesso non esiste alcun controllo del loro corretto ricondizionamento. Nei LMIC, le ditte che forniscono strumenti a noleggio non hanno strutture per ricondizionare i dispositivi medici e questi sono spesso trasferiti da una struttura all'altra senza un adeguato trattamento. In situazioni come queste, spesso c’è molto poca documentazione su dove o come i dispositivi siano stati utilizzati. In un documento molto dettagliato pubblicato dall’Istituto Britannico di Scienze della Decontaminazione, che delinea la relazione tra sala operatoria, ditta di approvvigionamento e centrale di sterilizzazione, è chiaro che la responsabilità ultima della sicurezza del paziente e della qualità della sterilizzazione ricade sul servizio di sterilizzazione della struttura sanitaria e non sulla ditta fornitrice (14). Pertanto, è fondamentale che tutti i dispositivi medici destinati alla sala operatoria transitino per la centrale di sterilizzazione della struttura e siano lì validati come sicuri per l’uso.

Stoccaggio delle confezioni sterili

Dopo la sterilizzazione, i pacchetti vengono rimossi e lasciati raffreddare. Se c’è una scorta sufficiente di vassoi chirurgici e di strumenti, si deve provvedere ad un adeguato stoccaggio nei locali della centrale di sterilizzazione prima che i pacchetti siano inviati alla sala operatoria. Il corretto stoccaggio degli strumenti e delle apparecchiature sterili è fondamentale per garantire che mantenano il corretto livello di sterilità o disinfezione. L’area di stoccaggio dei pacchetti sterili risponde a requisiti specifici.

- Stoccare in un ambiente pulito e asciutto (ossia lontano da fonti di umidità), protetto da ogni danno. Si raccomanda che i contenitori per lo stoccaggio non siano costruiti di materiali porosi, quali il legno.
- L’area deve essere luminosa, chiara e arieggiata, con un buon ricambio d’aria. La temperatura deve essere moderata, senza grandi variazioni durante il giorno.
- L’area di stoccaggio deve essere adeguatamente illuminata, le pareti devono essere lisce e facili da pulire.
- L’accesso all’area deve essere limitato.
- I pacchetti devono essere sistemati su scaffali aperti piuttosto che su ripiani chiusi, in un unico strato, per evitare che l’umidità si accumuli tra i pacchetti.
- Le etichette devono essere visibili e chiare.
- Il registro delle ispezioni deve essere chiaramente visibile. I ripiani devono trovarsi ad una distanza minima di 10 cm sia dal pavimento che dal soffitto.
- Prima dell’utilizzo, i pacchetti devono essere ispezionati per verificare che rispondano ai requisiti di sterilità.

Controllo della sterilità da parte dell’utilizzatore

E’ compito del dirigente del servizio di sterilizzazione o del responsabile dello stesso garantire che uno strumento medico non esca dalla centrale di sterilizzazione se non è assolutamente sicuro per l’utilizzo sull’uomo. Quando c’è carenza di strumenti oppure in sala operatoria, è frequente che gli strumenti medici vengano utilizzati con la consapevolezza che il ciclo di sterilizzazione non è stato completato. In ogni caso, è anche responsabilità di ogni professionista sanitario non consentire l’uso di strumenti non sicuri sui pazienti. Quindi, tutto lo staff dovrebbe essere addestrato sui controlli da effettuare prima di utilizzare uno strumento.

Utilizzo di strumenti sterili in sala operatoria

1. **Ruolo dell’infermiere che dispone l’attrezzatura sterile sul carrello operatorio in sala**

L’infermiere che prepara il carrello operatorio deve verificare che:

- la zona di preparazione sia tranquilla, pulita e non disturbata;
- i pacchetti siano asciutti (no umidità);
- gli imballaggi siano integri, non strappati o aperti;
- non ci siano macchie d’acqua da condensa, indice di non sterilità;

- l’accesso all’area deve essere limitato.
- Le ditte che forniscono strumenti a noleggio non hanno strutture per ricondizionare i dispositivi medici e questi sono spesso trasferiti da una struttura all'altra senza un adeguato trattamento. In situazioni come queste, spesso c’è molto poca documentazione su dove o come i dispositivi siano stati utilizzati. In un documento molto dettagliato pubblicato dall’Istituto Britannico di Scienze della Decontaminazione, che delinea la relazione tra sala operatoria, ditta di approvvigionamento e centrale di sterilizzazione, è chiaro che la responsabilità ultima della sicurezza del paziente e della qualità della sterilizzazione ricade sul servizio di sterilizzazione della struttura sanitaria e non sulla ditta fornitrice (14). Pertanto, è fondamentale che tutti i dispositivi medici destinati alla sala operatoria transitino per la centrale di sterilizzazione della struttura e siano lì validati come sicuri per l’uso.

Stoccaggio delle confezioni sterili

Dopo la sterilizzazione, i pacchetti vengono rimossi e lasciati raffreddare. Se c’è una scorta sufficiente di vassoi chirurgici e di strumenti, si deve provvedere ad un adeguato stoccaggio nei locali della centrale di sterilizzazione prima che i pacchetti siano inviati alla sala operatoria. Il corretto stoccaggio degli strumenti e delle apparecchiature sterili è fondamentale per garantire che mantenano il corretto livello di sterilità o disinfezione. L’area di stoccaggio dei pacchetti sterili risponde a requisiti specifici.

- Stoccare in un ambiente pulito e asciutto (ossia lontano da fonti di umidità), protetto da ogni danno. Si raccomanda che i contenitori per lo stoccaggio non siano costruiti di materiali porosi, quali il legno.
- L’area deve essere luminosa, chiara e arieggiata, con un buon ricambio d’aria. La temperatura deve essere moderata, senza grandi variazioni durante il giorno.
- L’area di stoccaggio deve essere adeguatamente illuminata, le pareti devono essere lisce e facili da pulire.
- L’accesso all’area deve essere limitato.
- I pacchetti devono essere sistemati su scaffali aperti piuttosto che su ripiani chiusi, in un unico strato, per evitare che l’umidità si accumuli tra i pacchetti.
- Le etichette devono essere visibili e chiare.
- Il registro delle ispezioni deve essere chiaramente visibile.

Controllo della sterilità da parte dell’utilizzatore

E’ compito del dirigente del servizio di sterilizzazione o del responsabile dello stesso garantire che uno strumento medico non esca dalla centrale di sterilizzazione se non è assolutamente sicuro per l’utilizzo sull’uomo. Quando c’è carenza di strumenti oppure in sala operatoria, è frequente che gli strumenti medici vengano utilizzati con la consapevolezza che il ciclo di sterilizzazione non è stato completato. In ogni caso, è anche responsabilità di ogni professionista sanitario non consentire l’uso di strumenti non sicuri sui pazienti. Quindi, tutto lo staff dovrebbe essere addestrato sui controlli da effettuare prima di utilizzare uno strumento.

Utilizzo di strumenti sterili in sala operatoria

1. **Ruolo dell’infermiere che dispone l’attrezzatura sterile sul carrello operatorio in sala**

L’infermiere che prepara il carrello operatorio deve verificare che:

- la zona di preparazione sia tranquilla, pulita e non disturbata;
- i pacchetti siano asciutti (no umidità);
- gli imballaggi siano integri, non strappati o aperti;
- non ci siano macchie d’acqua da condensa, indice di non sterilità;
- l’indicatore chimico sia presente ed abbia un colore uniforme;
- l’indicatore interno mostri sterilizzazione;
- gli strumenti siano puliti;
- la superficie degli strumenti sia intatta;
- gli strumenti siano adatti all’uso.

2. **Ruolo dell’infermiere strumentista**

L’infermiere strumentista deve controllare e garantire che:
- gli strumenti siano pronti e adatti all’uso;
- gli strumenti non siano sporchi o rotti;
- ci sia un numero di strumenti adeguato alla procedura da eseguire (per evitare di aprire più pacchetti o di ricorrere alla sterilizzazione lampo);
- i riferimenti del kit vengano registrati nella cartella del paziente;
- il chirurgo sia a conoscenza di qualsiasi eventuale carenza di strumenti e attrezzature.

3. **Ruolo dell’équipe chirurgica**

Prima di incidere, il chirurgo deve accertarsi che:
- il campo operatorio sia sterile e chiaramente definito;
- i dispositivi siano visibilmente puliti;
- gli strumenti siano adatti allo scopo;
- tutte le attrezzature necessarie siano disponibili;
- non vi sia alcun ritardo inutile al tavolo operatorio dovuto alla mancanza di strumenti;
- gli identificativi del kit siano riportati nelle cartella del paziente e siano consoni.

Al completamento della procedura chirurgica, il personale di sala deve:
- verificare che tutti gli strumenti siano presenti prima di restituirli alla centrale di sterilizzazione;
- sciacquare gli strumenti secondo il protocollo operativo standard;
- assicurarsi che gli oggetti siano inseriti in un contenitore a tenuta stagna prima del trasporto alla centrale di sterilizzazione;
- informare la centrale di qualsiasi problema inerente gli strumenti chirurgici, ad esempio, un dispositivo rotto.

Decontaminazione degli endoscopi

Un numero sempre maggiore di procedure diagnostiche e terapeutiche viene oggi eseguito utilizzando endoscopi rigidi o flessibili (16). Un’efficace decontaminazione proteggerà il paziente dalle infezioni, garantirà la qualità della procedura diagnostica e dei campioni prelevati e prolungherà la vita dello strumentario (17) (Tabella 3.3.4). Le fonti di infezione possono essere dovute a:
- il paziente precedente o una decontaminazione inadeguata dell’endoscopio prima del suo riutilizzo;
- flora endogena della cute, dell’intestino o delle mucose;
- lubrificanti, coloranti, fluidi per irrigazione o acqua di risciacquo contaminati;
- inadeguata decontaminazione degli strumenti riutilizzabili.

Il personale deve essere consapevole della complessità degli endoscopi che sta trattando, per garantire che la loro costruzione sia pienamente compresa. La mancata decontaminazione, in particolare degli endoscopi flessibili, è spesso legata al mancato accesso a tutti i canali degli strumenti. Indipendentemente dal metodo di disinfezione o sterilizzazione, la pulizia è un passaggio fondamentale della procedura di decontaminazione e si devono seguire ogni volta le istruzioni del produttore. È necessaria la dichiarazione di compatibilità dell’endoscopio con le procedure di decontaminazione.

Gli endoscopi rigidi sono relativamente facili da pulire, disinfezione e sterilizzare poiché non sono tanto sofisticati nella funzionalità, nella costruzione, nella configurazione dei canali e nella compatibilità con le procedure quanto quelli flessibili. Quando possibile, tutte le procedure di ricondizionamento in autoclave degli endoscopi e dei loro accessori devono avvenire in centrale di sterilizzazione oppure in un’area dedicata alla decontaminazione dove vengano messe in atto procedure di controllo e validazione. Non devono mai essere attuate in area clinica (17).

Gli endoscopi flessibili sono sensibili al calore e richiedono la disinfezione chimica (o quella a bassa temperatura) (18). La decontaminazione degli endoscopi flessibili deve essere fatta in una stanza dedicata, ben ventilata (fino a 12 ricambi all’ora), lontana dalla sala operatoria. Deve essere garantita una adeguata ventilazione per rimuovere vapori disinfettanti potenzialmente dannosi. La stanza deve essere dotata di una vasca sufficientemente capiente da contenere gli endoscopi più grandi e di un lavandino fornito di sapone e asciugamani di carta monouso. Nella stanza deve esserci un ciclo di lavoro...
da sporco a pulito per evitare di ricontaminare gli endoscopi già decontaminati esponendoli al contatto con quelli appena utilizzati su un paziente. Devono essere presenti sistemi che indichino quali endoscopi sono pronti per essere utilizzati sui pazienti, registrati manualmente o meccanicamente. Le centrali moderne hanno sistemi a due stanze con autoclavi a doppia porta che separano le aree sporche da quelle pulite.

Box 3.3.4 - Tipi di procedure endoscopiche

<table>
<thead>
<tr>
<th>Tipo di endoscopio</th>
<th>Esempi di endoscopio rigido</th>
<th>Esempi di endoscopio flessibile</th>
<th>Livello di decontaminazione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Invasivo: attraversa cavità del corpo normalmente sterili oppure viene introdotto nel corpo attraverso un’incisione della pelle o delle membrane mucose</td>
<td>Artroskopio</td>
<td>Nefroskopio</td>
<td>Sterilizzazione a vapore o con metodo a bassa temperatura, per esempio con gas plasma.</td>
</tr>
<tr>
<td></td>
<td>Laparoskopio</td>
<td>Angioskopio</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cistoskopio</td>
<td>Coledoskopio</td>
<td></td>
</tr>
<tr>
<td>Non invasivo: entra in contatto con membrane mucose intatte ma non penetra in cavità sterili</td>
<td>Broncoskopio</td>
<td>Gastrooskopio</td>
<td>Disinfezione di alto livello, per esempio pei immersione in glutaraldéide, acido peracetico, biossido di cloro.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Colonoskopio</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Broncoskopio</td>
<td></td>
</tr>
</tbody>
</table>

Riferimenti

7. Recommended practices for environmental cleaning. In: Perioperative

4. RACCOMANDAZIONI EVIDENCE-BASED SULLE MISURE PREVENTIVE DELLE SSI

MISURE PRE-OPERATORIE

4.1 Bagno pre-operatorio

Raccomandazioni

È buona pratica clinica che i pazienti facciano il bagno o la doccia prima dell'intervento.

Il panel suggerisce che allo scopo possa essere utilizzato o un sapone semplice o uno antimicrobico. *(Raccomandazione condizionale, qualità dell'evidenza moderata.)*

Il panel ha deciso di non formulare una raccomandazione sull'utilizzo di salviette imbevute di cloroxidina-gluconato (CHG) allo scopo di ridurre le SSI a causa della limitatezza e della scadente qualità delle evidenze.

Razionale delle raccomandazioni

- Il GDG considera una buona pratica clinica fare il bagno o la doccia prima dell'intervento chirurgico per garantire che la pelle sia il più pulita possibile e ridurre la carica batterica, soprattutto nel sito di incisione. Evidenze di qualità moderata dimostrano che, per ridurre i tassi di SSI, il bagno preoperatorio con sapone antimicrobico contenente CHG non apporta né danno né beneficio rispetto al normale sapone. Poiché non era disponibile alcuno studio in cui si utilizassero agenti antimicrobici diversi dal CHG, il GDG ha convenuto all'unanimità che possa essere utilizzato sia sapone semplice sia antimicrobico.
- La valutazione delle evidenze provenienti da 3 studi osservazionali ha dimostrato che il bagno preoperatorio con salviette imbevute di CHG al 2% può avere qualche vantaggio nel ridurre il tasso di SSI rispetto al bagno con sapone CHG o assenza di bagno preoperatorio. Tuttavia, in due di questi studi, il gruppo di controllo era inadeguato in quanto comprendeva pazienti che non rispettavano le istruzioni per l'uso delle salviette. Queste evidenze, di qualità limitata o molto scarsa, sono state considerate insufficienti per formulare una raccomandazione circa l'uso di salviette imbevute di CHG. Tutti i membri del GDG hanno convenuto in tal senso, a parte uno che avrebbe preferito avere una raccomandazione che scoraggiasse l'uso delle salviette, preoccupato per lo spreco di risorse se questi prodotti vengono acquistati, specialmente nei Paesi in via di sviluppo.

Osservazioni

- Sebbene non sia stato reperito alcuno studio che comprendesse pazienti pediatrici, il GDG ritiene che la dichiarazione di buona pratica sull'importanza del bagno al paziente sia applicabile anche per loro. Tuttavia, se eseguito con sapone antimicrobico, si devono seguire le istruzioni del produttore per quanto riguarda l'idoneità per questa fascia di età.
- Il GDG ha individuato possibili danni associati all'uso di soluzioni contenenti CHG, anche se è stato sottolineato che sono eventi rari. Due studi *(1,2)* hanno scoperto che le soluzioni di CHG possono causare irritazione della pelle, reazioni ritardate come dermatiti da contatto e fotosensibilità, e - in casi molto rari - reazioni di ipersensibilità come lo shock anafilattico. Alcuni di questi possibili eventi avversi possono essere indotti anche dagli ingredienti di un comune sapone, come i profumi. Una preoccupazione del GDG era il possibile sviluppo di sensibilità ridotta al CHG, in particolare quando si utilizzano salviette imbevute *(3)*.
- Il GDG ha anche espresso preoccupazione circa i costi delle salviette imbevute di CHG, in particolare in situazioni di risorse limitate, dove altri interventi possono avere una priorità più alta.
Background

Il bagno o la doccia preoperatori sono considerati una buona pratica clinica per rendere la pelle il più pulita possibile prima dell'intervento, al fine di ridurre la carica batterica, soprattutto nel sito di incisione. Questo, nelle strutture dove è disponibile e sostenibile, viene generalmente fatto con un sapone antimicrobico (di solito CHG 4% combinato con un detergente o in una preparazione di Triclosan) (4, 5).

La doccia preoperatoria con agenti antisettici è una procedura ben accetta per ridurre la microflora della pelle (6-8), ma è meno chiaro se questa procedura porti ad una minore incidenza di SSI (7, 8). Anche se rare, possono verificarsi reazioni di ipersensibilità e allergia al CHG (1).

Considerando le evidenze disponibili, la questione principale è se, per ridurre le SSI, il bagno o la doccia preoperatori siano più efficaci utilizzando un sapone antimicrobico invece di uno tradizionale. Il GDG ha anche considerato rilevante indagare se utilizzare salviette imbevute di CHG sia più efficace rispetto al bagno/doccia con sapone alla Clorexidina.

Diverse organizzazioni hanno pubblicato raccomandazioni per quanto riguarda il bagno preoperatorio (Tabella 4.1.1). La maggior parte consiglia di fare il bagno con sapone il giorno dell’intervento o quello precedente. Solo l’Istituto statunitense del gruppo di miglioramento della sanità per l’artroplastica dell’anca e del ginocchio raccomanda il sapone CHG per il bagno preoperatorio. Altri dichiarano che l’uso di un sapone antimicrobico invece di quello semplice è una questione irrisolta.

<table>
<thead>
<tr>
<th>Linee Guida</th>
<th>Raccomandazioni sul bagno preoperatorio e sul momento di esecuzione</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHEA/IDSA (2014) (9)</td>
<td>Questione non risolta</td>
</tr>
<tr>
<td>NICE (2008 e aggiornamento 2013) (10,11)</td>
<td>Il bagno è raccomandato per ridurre il carico microbico, ma non necessariamente le SSI. Dovrebbe essere utilizzato sapone. L’uso di sapone antisettico per prevenire la SSI non serve.</td>
</tr>
<tr>
<td>Health Protection Scotland Bundle (2013) (12)</td>
<td>Accertarsi che il paziente abbia fatto la doccia (o il bagno se non è in grado di fare la doccia) il giorno dell’intervento o quello precedente, utilizzando sapone normale.</td>
</tr>
<tr>
<td>The Royal College of Physicians of Ireland (2012) (13)</td>
<td>Il bagno con sapone è raccomandato il giorno dell’intervento o quello precedente.</td>
</tr>
<tr>
<td>US Institute of Health care Improvement bundle for hip and knee arthroplasty (2012) (14)</td>
<td>Si raccomanda il bagno preoperatorio con sapone al CHG per almeno tre giorni precedenti l’intervento.</td>
</tr>
<tr>
<td>UK High impact intervention care bundle (2011) (15)</td>
<td>Si raccomanda la doccia con sapone (o il bagno/doccia se il paziente non è in grado di fare la doccia) prima dell’intervento.</td>
</tr>
</tbody>
</table>

SHEA: Society for Healthcare Epidemiology of America; IDSA: Infectious Diseases Society of America; NICE: National Institute for Health and Care Excellence; UK: United Kingdom
A seguito di una analisi approfondita delle fonti e della forza delle evidenze nelle attuali linee guida, i membri del GDG hanno deciso di condurre una revisione systematica per verificare l’efficacia del bagno o doccia preoperatori con sapone antimicrobico (comprese le salviette imbevute di CHG) rispetto al sapone normale e decidere se il primo debba essere raccomandato ai pazienti chirurgici per prevenire le SSI.

Sintesi delle evidenze

Scopo della revisione delle evidenze (Appendice web 2) era di valutare se il bagno preoperatorio utilizzando un sapone antimicrobico sia più efficace nel ridurre il rischio di SSI rispetto al bagno con sapone normale. La revisione ha anche valutato se i bagni preoperatori con salviette imbevute di CHG è più efficace dell’uso di un sapone antimicrobico. La popolazione target comprendeva pazienti di tutte le età sottoposti ad intervento chirurgico. L’outcome primario era il verificarsi di SSI e mortalità correlata.

Hanno esaminato il bagno preoperatorio (o doccia) con utilizzo di un sapone antimicrobico confrontandolo con l’utilizzo del sapone semplice in totale 9 studi (7 RCT e 2 studi osservazionali) per complessivi 17.087 pazienti adulti (2, 16-23).

Ci sono evidenze di qualità moderata che il bagno con sapone al CHG non sia significativo per ridurre i tassi di SSI rispetto ai bagni con sapone normale (OR: 0,92; 95% CI: 0,80-1,04).

Tre studi osservazionali (24-26) hanno esaminato l’efficacia del bagno con salviette imbevute di CHG sui tassi di SSI. Uno studio prospettico di coorte (24) ha confrontato il bagno con salviette imbevute di CHG al 2% rispetto al bagno antiseptico con CHG al 4%. Due altri studi prospettici (25, 26) hanno confrontato il bagno ripetuto due volte con salviette imbevute di CHG al 2% con nessun bagno preoperatorio tra i pazienti di chirurgia ortopedica. In questi ultimi due studi, il gruppo di controllo era inadeguato in quanto comprendeva pazienti che non avevano rispettato le istruzioni per l’uso delle salviette prima dell’intervento (e quindi molto probabilmente non si erano lavati). Non è stata identificata alcuna riunione dei RCT che specificasse i criteri di inclusione.

Ci sono solo evidenze di bassa qualità che i bagni preoperatori con salviette imbevute di CHG possano ridurre i tassi di SSI rispetto a un bagno con sapone CHG o la mancanza del bagno. Il corpus di evidenze recuperate si concentra su pazienti adulti e non erano disponibili studi sulla popolazione pediatrica. Nessuno studio riportava dati sui tassi di mortalità attribuibile a SSI.

Ulteriori fattori considerati nella formulazione delle raccomandazioni

Valori e preferenze

Non è stato recuperato nessuno studio sui valori e le preferenze dei pazienti per quanto riguarda questo intervento. Il GDG ha convenuto che la maggior parte delle persone che hanno accesso all’acqua si fanno il bagno prima di un intervento chirurgico. E’ stato evidenziato che i pazienti desiderano essere informati sulle migliori pratiche cliniche e che tendono ad eseguire le procedure che vengono loro indicate dai sanitari. Alcuni membri del gruppo hanno sottolineato che i pazienti possono considerare di utilizzare le salviette imbevute di CHG se l’accesso all’acqua pulita è limitato. Tuttavia, altri hanno fatto notare che le evidenze riguardanti l’utilizzo delle salviette sono di qualità molto bassa e che il loro utilizzo potrebbe contribuire alla resistenza alla Clorexidina.

Utilizzo delle risorse

Il GDG ha sottolineato che la disponibilità e l’accesso all’acqua pulita possono essere un problema nelle aree rurali dei LMIC e che quindi i bagni preoperatori potrebbero essere omessi. Inoltre, il sapone antimicrobico rappresenterebbe un ulteriore onere finanziario per le strutture sanitarie e/o i pazienti in molti di questi Paesi. Analogamente, le salviette imbevute di CHG rappresenterebbero un ulteriore importante costo e la loro disponibilità potrebbe essere molto limitata nei LMIC. Il sapone classico è più ampiamente disponibile e più economico di uno antimicrobico. Uno studio di costo-eficacia (16) ha scoperto che il lavaggio preoperatorio completo con una soluzione di CHG non è un intervento conveniente per ridurre le SSI. Tuttavia, è importante notare che questo studio riguardava prevalentemente procedure chirurgiche pulite, per le quali il rischio di SSI è basso. I risultati ottenuti da altri due studi hanno suggerito che l’uso di salviette imbevute di CHG potrebbe rappresentare un risparmio dei costi assistenziali, soprattutto facendo calare l’incidenza delle SSI (27, 28).

Limiti della ricerca

I membri del GDG hanno sottolineato che le evidenze disponibili confrontavano soltanto la CHG come
agente antisettico rispetto al bagno con sapone semplice. Sono necessarie ulteriori ricerche che confrontino diversi agenti antisettici tra loro e rispetto al sapone semplice per il bagno preoperatorio. Sono necessari RCT specifici e analisi costo-efficacia per esaminare il timing e la durata del bagno e la sua importanza nel contesto di diversi tipi di intervento chirurgico e classi della ferita, specialmente nei LMIC. Inoltre, potrebbero essere di interesse studi microbiologici sui livelli di contaminazione. Infine, servono RCT ben progettati per produrre risultati di qualità migliore sull’efficacia delle salviette imbevute di CHG nel ridurre le SSI e le sue implicazioni sui costi, in particolare in realtà povere di risorse. Deve anche essere studiato l’impatto a lungo termine dell’uso di CHG sull’eventuale induzione di resistenza al CHG, in particolare per le salviette imbevute. Ulteriori ricerche sono necessarie anche per chiarire l’effetto del sapone o degli antisettici sul microbioma della pelle.

Riferimenti

15. High impact intervention: care bundle to prevent surgical site infection. London:

4.2 Decolonizzazione topica con mupirocina con o senza lavaggio del corpo con clorexidina gluconato per la prevenzione dell’infezione da Staphylococcus aureus nei portatori nasali che si sottopongono a intervento chirurgico

Raccomandazioni

1. Il panel raccomanda che i pazienti riconosciuti portatori nasali di *S. aureus* che devono sottoporsi ad intervento di chirurgia cardiotoracica e ortopedica ricevano applicazioni locali di mupirocina al 2% con o senza lavaggio del corpo con CHG.
 (Raccomandazione forte, qualità delle evidenze moderata.)

2. Il panel suggerisce di prendere in considerazione il trattamento anche degli altri pazienti riconosciuti portatori nasali di *S. aureus*, che devono sottoporsi a interventi chirurgici diversi, con applicazioni locali di mupirocina al 2% con o senza lavaggio del corpo con CHG.
 (Raccomandazione condizionale, qualità delle evidenze moderata.)

Razionale della raccomandazioni

- Evidenze di qualità moderata dimostrano che l’uso di pomate con mupirocina al 2%, con o senza lavaggio del corpo con CHG, nei pazienti chirurgici portatori nasali di *S. aureus* apporta benefici significativi se confrontato con i trattamenti placebo o nessun trattamento nella riduzione delle infezioni da *S. aureus*, così come dei tassi generali di ICA da *S. aureus*.

- Il GDG ha valutato attentamente queste evidenze e le ulteriori analisi di sottogruppo condotte dal team per la revisione sistematica. Il GDG ha concluso che le evidenze sono più solide per la popolazione dei pazienti di chirurgia cardiotoracica e ortopedica e che raccomandare con la stessa forza l’intervento per tutti i pazienti chirurgici potrebbe creare limiti di costi e fattibilità, comprese le implicazioni diagnostiche per identificare i portatori tra tutti i pazienti chirurgici.

- Di conseguenza, il GDG ha concordato di raccomandare che tutti i pazienti che si sottopongono a chirurgia cardiotoracica e ortopedica e che siano portatori nasali di *S. aureus* ricevano applicazioni intranasali preoperatorie di crema a base di mupirocina al 2%, accompagnate o non da lavaggio del corpo con CHG. La forza di questa raccomandazione è stata considerata forte. Nonostante il rischio e le conseguenze di un’infezione post operatoria da *S. aureus* siano più rilevanti in chirurgia cardiotoracica e ortopedica, il GDG ha fatto notare che i dati provenienti dalle meta-analisi e dalle meta-regressioni dimostrano che i pazienti portatori nasali di *S. aureus* che si sottopongono ad altro intervento chirurgico possono ugualmente trarre beneficio dal trattamento perioperatorio con pomate a base di mupirocina al 2% accompagnato o non da lavaggio del corpo con CHG. La forza di questa raccomandazione è stata considerata condizionale e il GDG ha proposto di utilizzare la dicitura “Il panel suggerisce di prendere in considerazione…” per evidenziare la necessità di un’attenta valutazione locale sull’opportunità e sulla modalità di applicazione di questa raccomandazione, in particolare per quanto concerne la fattibilità dell’identificazione dei portatori in una popolazione chirurgica più vasta e il rapporto costo-beneficio di tale operazione.

- Per gli altri pazienti chirurgici da sottoporre a questo intervento, è consigliabile prendere in considerazione fattori diversi, come ad esempio i tassi locali di *S. aureus*, di *S. aureus* resistente alla meticillina (MRSA) e fattori correlati al paziente stesso. Tra questi ultimi, i più importanti sono le eventuali pregresse infezioni da *S. aureus*, la condizione conosciuta di portatore di MRSA acquisito in comunità e pazienti colonizzati da *S. aureus* in siti diversi dal naso.

- Il GDG ha sottolineato che la raccomandazione di utilizzare mupirocina, combinata o meno con il lavaggio del corpo con CHG, deriva dalle evidenze disponibili poiché il sapone CHG al 4% è stato utilizzato per il lavaggio del corpo completo in combinazione con la crema nasale mupirocina in 2 dei 6 studi inclusi. Inoltre, in uno studio il lavaggio del corpo con sapone CHG 2% è stato usato come pratica clinica preoperatoria standard.

- Il GDG ha evidenziato che gli studi identificati come base di evidenza per queste raccomandazioni non hanno valutato lo screening per *S. aureus* come parte dell’intervento. Di conseguenza, non si è potuta
formulare alcuna raccomandazione sul ruolo dello screening in questo contesto o sulla popolazione di pazienti chirurgici che dovrebbe essere sottoposta a screening per portatori di *S. aureus*. Il GDG ha anche fatto notare che devono essere concordate procedure standard in base alle raccomandazioni nazionali e alle decisioni basate sull’epidemiologia locale, i fattori di rischio del paziente per l’acquisizione di *S. aureus*, la capacità microbiologica e le risorse finanziarie disponibili nella struttura. Il GDG ha sottolineato che questa raccomandazione si applica alle strutture in cui è possibile eseguire lo screening per *S. aureus*. Il GDG è anche profondamente convinto che la decolonizzazione con crema alla mupirocina, combinata o meno con il lavaggio antissetico del corpo, debba essere eseguita su tutti i portatori conosciuti di *S. aureus* solo per evitare trattamenti inutili e la diffusione della resistenza.

Osservazioni

- Gli studi inclusi sono stati eseguiti su pazienti adulti sottoposti ad interventi di chirurgia cardiaca, ortopedica, generale, ginecologica, neurologica, micrografica di Mohs, vascolare e gastrointestinale. Sulla base di queste evidenze, questa raccomandazione non è applicabile ai pazienti pediatrici.

- Le evidenze disponibili riguardano la colonizzazione nasale da *S. aureus*. Possono essere presi in considerazione per la decolonizzazione anche altri siti del corpo di frequente e/o nota colonizzazione. Tuttavia, a causa della mancanza di evidenze, nessuna raccomandazione può essere fatta in tal senso.

- Gli studi sono stati condotti per lo più in Paesi ad alto reddito.

- In tutti gli studi inclusi è stata utilizzata una pomata nasale di mupirocina ad una concentrazione del 2%. In 2 dei 6 studi (1, 2) inclusi, in combinazione con la pomata, è stato utilizzato sapone CHG 4% per il lavaggio completo del corpo. In uno studio (3) il lavaggio del corpo con sapone CHG 2% era utilizzato come pratica clinica preoperatoria standard.

- L’applicazione della mupirocina variava da 2 volte al giorno per 5 giorni (2, 4, 5) a 7 giorni (3) prima dell’intervento o dal giorno del ricovero fino al giorno dell’intervento (6). La somministrazione quotidiana continuava dopo l’intervento chirurgico per un totale di 5 giorni solo in uno studio (1). In tutti gli studi, almeno una somministrazione aveva avuto luogo nell’immediato preoperatorio. Data la variabilità dei protocolli di trattamento, il GDG non è stato in grado di fornire istruzioni specifiche sulla frequenza e la durata della somministrazione di mupirocina.

- Il GDG ha identificato nell’antibiotico-resistenza un importante possibile danno associato all’uso di mupirocina (7). È stato sottolineato che un approccio per trattare tutti i pazienti, indipendentemente dalla loro condizione di portatore, invece dei soli portatori accertati, aumenta solo la probabilità di resistenza alla mupirocina (8, 9). Di conseguenza, nelle strutture in cui sia utilizzata la mupirocina, si raccomanda il monitoraggio della resistenza (10-12). Le evidenze disponibili (3, 5, 6) e studi aggiuntivi (13, 14) non mostravano tendenze verso una crescente prevalenza dell’antibiotico-resistenza dopo un uso a breve termine nei pazienti chirurgici. Tuttavia, ci sono evidenze che l’aumento dell’uso a breve termine di mupirocina porta ad un aumento della resistenza alla mupirocina stessa e ad altri antibiotici (15). Inoltre, in ambienti noti per l’alta prevalenza di resistenza alla mupirocina, la raccomandazione per l’uso perioperatorio di pomate nasali a base di questo antibiotico non è applicabile.

- Si deve tener conto delle potenziali reazioni allergiche alla mupirocina.

- Un recente studio (16) ha mostrato una riduzione della mortalità a un anno nei pazienti trattati con mupirocina rispetto ai pazienti trattati con placebo. La presente revisione delle evidenze, basata su tre studi (1,3, 5), non ha rilevato alcun effetto sulla mortalità a breve termine (fino a 8 settimane di follow-up).

- Il GDG ha individuato un possibile danno associato all’utilizzo di soluzioni contenenti CHG, sebbene sia stato sottolineato che si tratta di un caso raro. Due studi (17, 18) hanno scoperto che le soluzioni CHG possono causare irritazione cutanea, reazioni ritardate (come dermatiti da contatto e fotosensibilità) e, in casi molto rari, reazioni di ipersensibilità come lo shock anafilattico. Alcuni di questi potenziali eventi avversi possono essere indotti anche dagli ingredienti di un comune sapone, come i profumi. Una preoccupazione del GDG è stata il possibile sviluppo di ridotta sensibilità al CHG (19).
Background

Lo S. aureus è il principale patogeno associato alle ICA negli ospedali di tutto il mondo. Queste infezioni sono associate a morbilità e mortalità sostanziali e questa tendenza sta aumentando a causa dell’estesa diffusione della meticilliino-resistenza (20).

Le infezioni da stafilococco si verificano regolarmente nei pazienti ricoverati e possono avere conseguenze gravi, quali le infezioni della ferita chirurgica, la polmonite nosocomiale e la batteriemia da catetere (21–25). Uno studio recente su oltre 7 milioni di ricoveri ospedalieri negli Stati Uniti ha stimato che l'impatto nazionale annuo è stato di 2,7 milioni di giorni addizionali di degenza, US $ 9,5 miliardi di costi aggiuntivi e almeno 12.000 decessi (26). Dato l'elevato onere di queste infezioni per i pazienti e per il sistema sanitario, sono essenziali efficaci strategie preventive.

Storicamente, il controllo dello S. aureus si è focalizzato sulla prevenzione della trasmissione incrociata tra pazienti (27). Tuttavia, è stato ripetutamente dimostrato che una grande percentuale di ICA (circa l’80% dopo l’intervento chirurgico) da S. aureus origina dalla flora personale dei pazienti (23, 28, 29). Ora, il trasporto nasale di S. aureus è considerato un fattore di rischio ben definito di conseguente infezione in vari gruppi di pazienti (22, 30).

La pomata nasale di mupirocina (solitamente applicata 2 volte al giorno per 5 giorni) è un trattamento efficace, sicuro e relativamente economico per la decolonizzazione. La mupirocina può essere utilizzata per l’eradicazione sia di S. aureus sensibili alla meticillina (MSSA) che non (MRSA), anche se è stata segnalata resistenza mupirocinica (31). Diversi studi interventistici hanno tentato di ridurre i tassi di infezione eliminando il trasporto nasale (22). Recentemente, è diventata disponibile una velocie diagnostica molecolare che è in grado di rilevare i portatori nasali di S. aureus entro ore anziché giorni (32, 33), consentendo così il tempestivo trattamento preventivo dei vettori, quando adeguato.

La linee guida per la prevenzione delle SSI pubblicate da SHEA / IDSA (34) raccomandano lo screening per S. aureus e la decolonizzazione dei pazienti chirurgici per le procedure ad alto rischio. Alcuni pacchetti per la prevenzione delle SSI, come quello dell’Istituto statunitense per il miglioramento della sanità (35) raccomandano lo screening per S. aureus e la decolonizzare prima dell’intervento, per i positivi (Tabella 4.2.1). Queste raccomandazioni, però, non si basano su revisioni sistematiche della letteratura, meta-analisi o rigorose valutazioni della qualità dei delle evidenze disponibili.

<table>
<thead>
<tr>
<th>Linee Guida (anno di pubblicazione)</th>
<th>Raccomandazioni sullo screening e decolonizzazione da S. aureus</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHEA/IDSA (2014) (34)</td>
<td>Controllare la presenza di S. aureus (MSSA e MRSA) e decolonizzare i pazienti chirurgici da sottoporre a procedure ad alto rischio, compresi alcuni interventi ortopedici o cardiochirurgici.</td>
</tr>
<tr>
<td>NICE (2008) (36)</td>
<td>Per ridurre il rischio di SSI non ricorrere alla decontaminazione nasale di routine con antibiotici topici allo scopo di eliminare lo S. aureus.</td>
</tr>
<tr>
<td>Institute for Healthcare Improvement: hip and knee arthroplasty (2012) (35)</td>
<td>Controllare la presenza di S. aureus. In caso di positività, decolonizzare tre giorni prima dell’intervento con mupirocina nasale e sapone a base di clorexidina gluconato per complessivi 5 giorni sia per MSSA che MRSA</td>
</tr>
<tr>
<td>Health Protection Screen Scotland bundle (2013) (37)</td>
<td>Controllare la presenza di MRSA seguendo la valutazione del rischio clinico</td>
</tr>
</tbody>
</table>

A seguito di una analisi approfondita delle fonti e della potenza delle evidenze nelle linee guida disponibili, i membri del GDG hanno deciso di condurre una revisione sistematica per valutare le evidenze disponibili sull'efficacia della decolonizzazione con mupirocina pomata nasale per la riduzione del tasso di infezione da *S. aureus*, comprese le SSI, nei pazienti da sottoporre ad intervento chirurgico con carica nasale di *S. aureus* riconosciuta.

Sintesi delle evidenze

Scopo della revisione delle evidenze (Appendice web 3) era di determinare se la decolonizzazione con pomata nasale alla mupirocina associata o meno al lavaggio del corpo con saponi CHG riduce i tassi di infezione complessivi di *S. aureus*, comprese le SSI. La popolazione target comprendeva pazienti di tutte le età, portatori nasali noti di *S. aureus*, sottoposti ad una procedura chirurgica. L'outcome principale era l'insorgenza di SSI e mortalità correlata.

Sono stati identificati sei RCT (1-6), per complessivi 2.385 pazienti, che confrontavano la pomata nasale alla mupirocina - combinata e non con il lavaggio del corpo con saponi CHG - con il placebo o nessun trattamento. Cinque studi descrivevano solo pazienti di Chirurgia (cardiaca, ortopedica, generale, ginecologica, neurologica e micrografica di Mohs) e uno (1) comprendeva sia pazienti di Chirurgia (cardiaca, vascolare, ortopedica, gastrointestinale e generale) sia pazienti non chirurgici (medicina Interna). Secondo gli studi selezionati, sono stati valutati i seguenti confronti:

1. mupirocina vs placebo / nessun trattamento per i seguenti outcome:
 a. Tutte le ICA causate da *S. aureus*;
 b. SSI associate all'assistenza causate da *S. aureus*.

Nel complesso, evidenze di moderata qualità dimostrano che l'uso di mupirocina 2% pomata, combinata o meno con il lavaggio del corpo con saponi CHG, apporta vantaggi significativi nella riduzione dei tassi di SSI causate da *S. aureus* nei pazienti chirurgici portatori nasali rispetto al placebo / senza trattamento (OR: 0,46; 95% CI: 0,31-0,69), comprese le ICA in generale causate da *S. aureus* (OR: 0,48; 95% CI: 0,32-0,71). Da notare che che la maggior parte degli studi riguardava pazienti sottoposti a chirurgia cardiotoracica e ortopedica, ma due prove comprendevano anche altri tipi di procedure. Di fatto, nell'analisi della meta-regressione, non c'erano evidenze che suggerissero che l'effetto sui tassi di infezione da *S. aureus* fossero diversi per altre tipologie di intervento (P = 0.986).

Il corpus delle evidenze recuperate riguardava solo pazienti adulti e non c'erano studi disponibili sulla popolazione pediatrica. La ricerca bibliografica non ha identificato studi che segnalassero casi di mortalità attribuibile a SSI.

Ulteriori fattori considerati nella formulazione delle raccomandazioni

Valori e preferenze

Per quanto riguarda questo intervento non è stato reperito alcuno studio sui valori e le preferenze dei pazienti. Il GDG è convinto che i pazienti con colonizzazione nasale da *S. aureus* preferiscano essere trattati con pomata nasale alla mupirocina combinata o meno con il lavaggio del corpo con CHG allo scopo di ridurre il rischio di SSI. Al contrario, i pazienti potrebbero essere preoccupati che insorga l'AMR, così come per il possibile sviluppo di ridotta sensibilità agli antissettic, come la CHG.

Utilizzo delle risorse

L'uso di mupirocina, compreso lo screening per *S. aureus* (strategia "screen-and-treat"), si è dimostrato conveniente in 2 studi (1, 39). In media, i costi ospedalieri sono stati inferiori di € 1.911,00 (n = 205; € 8.602 contro € 10.513; P = 0.01).

L'analisi dei sottogruppi ha dimostrato che i pazienti cardiotoracici con carica nasale trattata con mupirocina e CHG erano costati € 2.841,00 meno (n = 280; € 9.628 contro € 12.469; P = 0.006) e i pazienti i ortopedici € 955,00 di quelli non trattati (n = 135; € 6.097 contro € 7.052; P = 0.01). Inoltre, basandosi su una percentuale di portatori nasali di *S. aureus* pari al 20%, gli autori stimano un risparmio di circa € 400.000,00 euro per ogni 1000 pazienti chirurgici (39).

Il GDG ha sottolineato che nei LMIC l'accesso la disponibilità di mupirocina nasale potrebbero essere limitati e costituire un onere finanziario, anche per i pazienti. Inoltre, in molte di quelle realtà, il sapone antibatterico costituirrebbe un ulteriore costo per le strutture sanitarie e/o i pazienti. Lo stesso vale per la capacità e i costi del laboratorio tecnico per il processo di screening.
Limiti della ricerca
La maggior parte dei membri del GDG ha sottolineato che non sono necessari ulteriori studi sulla mupirocina. Tuttavia, data la variabilità nel tempo e nella durata delle somministrazioni e dei bagni con CGH tra le evidenze incluse in questa revisione, sono necessari altri RCT per chiarire questo tema nei pazienti chirurgici. I membri del GDG hanno evidenziato che per la decolonizzazione nasale dei portatori di S. aureus che devono sottoporsi ad intervento chirurgico dovrebbero essere studiati altri agenti antibiotici attraverso RCT in doppio cieco. È stato sottolineato che per i LMIC è altamente auspicabile lo sviluppo e essere studiati altri agenti antibiotici attraverso RCT.

Limiti della ricerca
La maggior parte dei membri del GDG ha sottolineato che non sono necessari ulteriori studi sulla mupirocina. Tuttavia, data la variabilità nel tempo e nella durata delle somministrazioni e dei bagni con CHG tra le evidenze incluse in questa revisione, sono necessari altri RCT per chiarire questo tema nei pazienti chirurgici. I membri del GDG hanno evidenziato che per la decolonizzazione nasale dei portatori di S. aureus che devono sottoporsi ad intervento chirurgico dovrebbero essere studiati altri agenti antibiotici attraverso RCT in doppio cieco. È stato sottolineato che per i LMIC è altamente auspicabile lo sviluppo e l’implementazione di un processo di screening poco costoso per lo S. aureus. Inoltre, per queste realtà, servono analisi di costo-efficacia.

Riferimenti

4.3 Screening per la colonizzazione da enterobatteri produttori di betalattamasi a spettro allargato e impatto sulla profilassi antibiotica

Raccomandazione
Il panel ha deciso di non formulare una raccomandazione a causa della mancanza di evidenze.

Razionale della raccomandazione
- La ricerca bibliografica non ha identificato studi rilevanti che confrontassero la modifica su misura della profilassi antibiotica chirurgica per la prevenzione di SSI in aree con un’elevata prevalenza di betalattamasi a spettro allargato (ESBL) prodotta da enterobatteri (compresi i pazienti con colonizzazione rettale da ESBL), rispetto alla profilassi standard. Inoltre, non è stato identificato nessuno studio che confrontasse lo screening per ESBL di routine (indipendentemente dalla prevalenza di ESBL prima della chirurgia) con l’assenza di screening e che avrebbe potuto fornire informazioni per una raccomandazione su questo tema.

Osservazioni
- La prevalenza di enterobatteri produttori di ESBL è stata considerata alta quando > 10% sul numero totale dei campioni presentati al laboratorio analisi, e comprendeva sia l’infezione che la colonizzazione.
- Il GDG ritiene che lo screening di routine per ESBL prima degli interventi chirurgici potrebbe aumentare l’uso pre-chirurgico diffuso di antibiotici ad ampio spettro (in particolare i carbapenemi) nei pazienti colonizzati. Questa pratica può essere dannosa, in quanto potrebbe aumentare ulteriormente l’emergere di resistenza nei batteri gram-negativi, in particolare enterobatteriacee carbabenemici resistenti. Il rapporto dell’OMS sulla sorveglianza globale delle antibiocoresistenze ha già espresso preoccupazione circa l’insorgenza di batteri antibiotico-resistenti dovuta all’uso inappropriato di agenti antimicrobici. E’ importante ricordare che le opzioni per il trattamento delle infezioni sono estremamente limitate a causa del mancato sviluppo di una nuova classe di agenti antimicrobici negli ultimi decenni (1).

Background
Negli ultimi anni, la prevalenza di pazienti colonizzato da batteri produttori di ESBL è aumentata a livello mondiale sia nelle strutture sanitarie che nei servizi di comunità. Come la maggior parte dei batteri gram-negativi, i produttori di ESBL risiedono nel tratto gastrointestinale e la decolonizzazione è molto difficile da ottenere. Le infezioni più frequenti causate da ESBL riguardano le vie urinarie e, in misura minore, il sangue. Le attuali linee guida per la prevenzione delle SSI non contengono lo screening, la decolonizzazione e l’adattamento della profilassi antibiotica nei pazienti chirurgici colonizzati da questi organismi né l’effetto di queste procedure per la prevenzione delle SSI. Il GDG ha deciso di condurre una revisione sistematica per valutare l’efficacia di queste misure.

Scopo della revisione delle evidenze (Appendice web 4) era valutare se la modifica personalizzata della SAP in aree con un’alta prevalenza di ESBL produttori (> 10%), compresi i pazienti con colonizzati, è più efficace nel ridurre il rischio di SSI rispetto alla profilassi di routine. Un ulteriore obiettivo era quello di indagare se lo screening di routine, sia nelle aree a basso rischio che in quelle a rischio elevato, avesse un impatto sulla riduzione del rischio di SSI rispetto a nessuno screening. La popolazione target comprendeva pazienti di tutte le età, sottoposti ad una procedura chirurgica. L’outcome principale era l’insorgenza di SSI e mortalità correlata.

La ricerca bibliografica non ha identificato studi che confrontassero la modifica personalizzata della SAP per la prevenzione delle SSI in aree con elevata prevalenza di ESBL produttori (compresi i pazienti con colonizzazione rettale) rispetto a nessuna modifica della profilassi standard. Analogamente, non sono stati identificati studi comparativi dello screening sui pazienti per ESBL rispetto a nessuno screening come misura preventiva prima dell’intervento chirurgico.
Ulteriori fattori considerati nella formulazione delle raccomandazioni

Utilizzo delle risorse
In assenza di evidenze, l’attuazione di routine dello screening per rilevare la colonizzazione fecale prima della chirurgia avrebbe un forte impatto sui costi, soprattutto nei LMIC. Per esempio, questo implicherebbe che il personale sanitario prelevi un tampone, che il laboratorio di microbiologia lo analizzi per rilevare l’ESBL, che sia eseguito l’antibiogramma e i risultati siano comunicati all’équipe chirurgica in modo tempestivo. Questo può essere difficile dato che la maggior parte dei laboratori sono carenti di risorse e potrebbero mancare validi programmi di controllo qualità, in particolare nei LMIC. Inoltre, quando il tampone è positivo per ESBL, il team clinico è portato ad utilizzare carbapenemi sui pazienti colonizzati. Questo genera costi aggiuntivi in quanto devono essere somministrati per via intravenosa, procedura costosa che richiede molto tempo, soprattutto nelle realtà a basso livello di risorse che soffrono già di una carenza di personale infermieristico e medico.

Limiti della ricerca
I membri del GDG hanno sottolineato che, anche se in tutto il mondo si registra un aumento nell’emergenza di enterobatteri ESBL produttori, non sono stati pubblicati trial clinici o studi osservazionali di buona qualità che rispondano alle domande di questa revisione, neppure nei Paesi in cui il problema è endemico. Sono urgentemente necessari RCT e studi osservazionali di buona qualità per dare una guida al team chirurgico, evitare l’uso inappropriato degli antibiotici ad ampio spettro e prevenire l’emergenza di organismi multifarmaco-resistenti su base globale. Come priorità, questi studi dovrebbero indagare se la modifica personalizzata della SAP nelle aree ad elevata prevalenza di enterobatteri ESBL produttori, compresi i pazienti riconosciuti colonizzati, è più efficace nella riduzione del rischio di SSI rispetto a nessuna modifica della profilassi standard.

Riferimenti
4.4 Timing ottimale per la profilassi antibiotica preoperatoria (SAP)

Raccomandazioni

Il panel raccomanda l'antibiotico-profilassi prima dell'incisione chirurgica quando indicato (a seconda del tipo di operazione).

(Raccomandazione forte, qualità delle evidenze bassa)

Il panel raccomanda l'antibiotico-profilassi entro 120 minuti prima dell'incisione, tenendo conto dell'emivita dell'antibiotico.

(Raccomandazione forte, qualità delle evidenze moderata)

Razionale delle raccomandazioni

1. Nel complesso, evidenze di bassa qualità dimostrano che la somministrazione di antibiotici dopo l'incisione causa danni, con un significativo aumento del rischio di SSI rispetto alla somministrazione prima dell'incisione. Al momento dell'incisione, e per tutta la durata dell'intervento, devono essere presenti adeguate concentrazioni tissutali di antibiotico affinché la profilassi sia efficace. Ciò richiede che la somministrazione preceda l'incisione. Ulteriori evidenze dimostrano che una bassa concentrazione di antibiotici nei tessuti al momento della chiusura della ferita è associata a tassi di SSI più elevati (1,2). Di conseguenza, il GDG ha deciso all'unanimità di raccomandare la somministrazione prima dell'incisione, ritenendo che la forza di questa raccomandazione sia forte, anche se la qualità generale delle evidenze è bassa. È improbabile che in futuro si rendano disponibili evidenze di qualità superiore e non sarebbe etico realizzare uno studio in cui la profilassi venisse effettuata solo dopo l'incisione a causa del rischio di causare danni significativi.

2. Evidenze di qualità moderata che confrontano diversi intervalli di tempo prima dell'incisione mostrano danni significativi quando l'antibiotico-profilassi è somministrata prima di 120 minuti, rispetto ai 120 minuti precedenti l'incisione. Dato il significativo aumento di SSI con la somministrazione in tempi superiori ai 120 minuti precedenti l'incisione, il GDG ha deciso di raccomandare l'antibiotico-profilassi entro 120 minuti prima della stessa. È stata eseguita un'ulteriore analisi dei dati ricavati da studi di valutazione degli effetti sulle SSI della somministrazione in intervalli temporali diversi ma compresi nei 120 minuti precedenti l'incisione, ovvero: 120-60 minuti vs. 60-0 minuti, e 60-30 minuti vs. 30-0 minuti. Non sono state riscontrate differenze significative. Pertanto, sulla base delle evidenze disponibili, non è possibile stabilire con maggiore precisione il timing ottimale, entro l'intervallo di 120 minuti. Diversi membri del GDG hanno espresso preoccupazione per il fatto che le concentrazioni sieriche e tessutali degli antibiotici con emivita breve, somministrati all'inizio di questo intervallo temporale, possano essere meno efficaci di una somministrazione più prossima al momento dell'incisione. Per questo motivo, il GDG raccomanda di tener conto dell'emivita dell'antibiotico somministrato per stabilire il timing più adatto per la somministrazione, entro 120 minuti dall'incisione (ad esempio, somministrazione più vicina al momento di incisione [<60 minuti] per antibiotici con emivita breve, come cefazolina, cefoxitina e penicilline in generale). La stessa attenzione deve essere prestata al tempo di emivita del singolo antibiotico quando si considera la possibilità di ri-somministrarlo durante un intervento chirurgico prolungato. Può preoccupare il legame degli antibiotici alle proteine plasmatiche quando si scelgono antimicrobici quali: ceftriaxone, teicoplanina o ertapenem. In particolari condizioni fisiopatologiche (ad esempio in pazienti con un basso livello di proteine sieriche, come i soggetti gravemente malati o molto anziani), questa attività farmacologica può effettivamente essere compromessa. Inoltre, malnutrizione, obesità, cachessia o malattia renale con perdita di proteine possono provocare un'esposizione subottimale agli antibiotici a causa dell'aumento della clearance antibiotica in presenza di una funzione renale normale o aumentata, oppure causare sovraesposizione e potenziali effetti tossici in presenza di una funzione renale gravemente compromessa.
Osservazioni

- Non rientra nell’ambito di applicazione delle presenti linee guida fornire raccomandazioni sul genere di operazioni che richiedono antibiotico-profilassi, le dosi e la posologia intraoperatoria. L’OMS metterà a disposizione linee guida specifiche su questo tema. Esempi di procedure che non richiedono profilassi sono le operazioni ortopediche pulite che non comportano impianti o le procedure laparoscopiche elettive a basso rischio.

- Il corpus di evidenze recuperate era incentrato sui pazienti adulti e non era disponibile alcuno studio sulla popolazione pediatrica. Tuttavia, il GDG ritiene che questa raccomandazione sia valida anche per i pazienti pediatrici.

- Negli studi inclusi, le informazioni relative alla durata della procedura, ai protocolli di riSomministrazione, ai tempi esatti della somministrazione, ai tempi di infusione e se l’emivita degli antibiotici somministrati sia stata presa in considerazione sono generalmente poco chiare.

- In questa revisione non sono stati inclusi gli studi sul taglio cesareo in quanto confrontavano la profilassi pre-incisionale con quella successiva al clampaggio del cordone ombelicale. Una recente revisione sistemmatica sui tagli cesarei indica che la SAP va somministrata prima dell’incisione al fine di ridurre la morbilità infettiva della madre (3). Questo è in linea con le raccomandazioni per altri interventi chirurgici in cui è indicata la SAP.

- Le linee guida della American Society of Health-System Pharmacists (ASHSP) (4) indicano che la riSomministrazione intraoperatoria è necessaria se la durata della procedura è superiore a 2 emivite del farmaco o se durante l’intervento si verifica una perdita di sangue eccessiva. Mentre i vantaggi di questo approccio sembrano essere ragionevoli dal punto di vista farmacocinetico, gli studi esaminati non hanno affrontato nei protocolli di profilassi la durata delle procedure chirurgiche o della riSomministrazione in relazione alle SSI. Nessuna raccomandazione può essere emanata in merito ai vantaggi o danni di tale approccio.

- Alcune linee guida riconoscono che alcuni antibiotici richiedono una somministrazione di oltre 1-2 ore, come ad esempio fluorochinoloni e vancomicina. Pertanto, la somministrazione di questi agenti deve iniziare entro 120 minuti prima dell’incisione chirurgica. La ricerca bibliografica non ha identificato studi con le SSI come outcome, che distinguessero tra i tempi di somministrazione degli antibiotici che richiedono un periodo più lungo e quelli con tempi di somministrazione più brevi. I medici devono considerare l’emivita e il legame alle proteine plasmatiche come i parametri farmacocinetici più importanti di ogni singolo agente SAP al fine di garantire un’adeguata concentrazione plasmatica e tissutale al momento dell’incisione e durante l’intera procedura chirurgica.

Background

Con l’acronimo SAP (Surgical Antibiotic Prophylaxis) si intende la prevenzione delle complicanze infettive attraverso la somministrazione di un efficace agente antimicrobico prima dell’esposizione a contaminazione durante un intervento chirurgico (4). Una SAP di successo richiede la presenza dell’agente antimicrobico al sito operatori o, in concentrazioni efficaci, prima che si verifichi la contaminazione (5). La contaminazione microbica della ferita durante l’intervento può essere di origine esogena o endogena. I benefici derivanti dall’uso di routine della profilassi antibiotica prima di interventi non-puliti di implantologia per prevenire le SSI sono da lungo tempo riconosciuti. Ulteriori evidenze della sua efficacia per altre procedure pulite, per le quali le conseguenze di un’infezione sarebbero devastanti (per esempio la cardiochirurgia e la neurochirurgia) sono un importante argomento di ricerca. Da notare che l’effetto della SAP non riguarda la prevenzione delle SSI causate da contaminazione postoperatoria. All’interno di queste linee guida, sono state formulate raccomandazioni focalizzate sul timing ottimale della somministrazione della SAP mentre le indicazioni sul tipo di SAP a seconda dell’intervento chirurgico esulano dallo scopo del documento. Alcuni studi sperimentali e clinici hanno dimostrato un effetto de timing della SAP sulle SSI (6,7), ma la il tema è ancora in discussione.

La somministrazione della SAP prima dell’intervento chirurgico è stata specificata in
molte linee guida per la pratica clinica pubblicate da organismi professionali o autorità nazionali (Tabella 4.4.4.1). Alcuni di questi orientamenti, quelli pubblicati da ASHP (4), SHEA/IDSA (8), Royal College of Physicians of Ireland (9) e Health Protection Scotland (10), raccomandano la somministrazione entro 60 minuti prima dell’incisione (120 minuti per vancomicina e fluorochinoloni a causa dei tempi di infusione prolungati) (3). Queste raccomandazioni, però, non si basano su revisioni sistematiche della letteratura e metanalisi né su una rigorosa valutazione della qualità delle evidenze disponibili.

Box 4.4.1- Raccomandazioni sulla SAP secondo le linee guida disponibili

<table>
<thead>
<tr>
<th>Linee Guida (anno di pubblicazione)</th>
<th>Raccomandazioni sulla SAP e relativi tempi di somministrazione.</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHEA/IDSA (2014) (8)</td>
<td>Somministrare solo quando indicato, entro 1 ora prima dell’incisione con picco di efficacia tra 0 e 30 minuti prima dell’incisione rispetto alla somministrazione tra 30 e 60 minuti.</td>
</tr>
<tr>
<td>NICE (2008) (11)</td>
<td>Dose unica di antibiotico per via IV all’inizio dell’anestesia. La profilassi deve essere effettuata prima negli interventi in cui si utilizza un tourniquet, ma dopo e non prima del suo posizionamento.</td>
</tr>
<tr>
<td>ASHSP (2013) (4)</td>
<td>Si raccomanda che la prima somministrazione di antibiotico inizi entro l’ora precedente l’intervento. La somministrazione di vancomicina e fluorochinoloni deve iniziare 120 minuti prima dell’incisione chirurgica a causa dei tempi di infusione prolungati di questi farmaci.</td>
</tr>
<tr>
<td>The Royal College of Physicians of Ireland (2012) (9)</td>
<td>In fase di preparazione (entro i 60 minuti precedenti l’incisione chirurgica). Se deve essere applicato un tourniquet, è necessario un intervallo di 15 minuti tra il termine della somministrazione degli antibiotici e il suo posizionamento. Dose unica, fatta eccezione per i casi di emorragia (> 1,5 l. nell’adulto o 25 ml/Kg nel bambino) e degli interventi chirurgici prolungati (4 ore).</td>
</tr>
<tr>
<td>USA Institute of Health Improvement: surgical site infection (2012) (12)</td>
<td>Entro i 60 minuti precedenti l’incisione. Interrompere per 24 ore (48 nei pazienti cardiaci)</td>
</tr>
<tr>
<td>UK High impact intervention care bundle (2011) (13)</td>
<td>Somministrazione degli antibiotici adeguati entro i 60 minuti precedenti l’incisione e ripetere soltanto in caso di perdita copiosa di sangue, interventi chirurgici prolungati o dopo chirurgia protesica</td>
</tr>
</tbody>
</table>

SAP: Surgical antibiotic prophylaxis; SHEA: Society for Healthcare Epidemiology of America; IDSA: Infectious Diseases Society of America; NICE: National Institute for Health and Care Excellence; ASHSP: American Society of Health-Care Pharmacists

A seguito di un’analisi approfondita delle fonti e della potenza delle evidenze nelle attuali linee guida, i membri del GDG hanno deciso di effettuare una revisione sistematica per valutare le evidenze disponibili sul corretto timing di somministrazione della SAP.

Sintesi delle evidenze

Scopo della revisione delle evidenze (Appendice web 5) era di confrontare l’effetto di diverse tempistiche di somministrazione della SAP amministrazione sul rischio di SSI e identificare il timing ottimale per prevenire efficacemente le SSI. La popolazione target...
erano pazienti chirurgici di tutte le età per i quali era indicata la SAP. Gli outcome principali erano l'insorgenza di SSI e la mortalità correlata. Sono stati identificati in totale di 13 studi osservazionali (7,14-25), per complessivi 53.975 pazienti adulti; 2 provenivano da più centri. Non è stato reperito alcun RCT. Il corpus di evidenze si focalizzava sui pazienti adulti e non era disponibile alcuno studio sulla popolazione pediatrica. La ricerca bibliografica non ha individuato studi riferiti alla mortalità imputabile a SSI. Nonostante la sostanziale eterogeneità nel riportare gli intervalli di tempo tra gli studi selezionati, sono state effettuate metanalisi separate per valutare i seguenti confronti di timing della somministrazione della SAP: pre vs. post-incisione entro 120 minuti vs. più di 120 minuti prima dell'incisione; più di 60 minuti vs. entro 60 minuti prima dell'incisione; e 30-60 minuti vs. 0-30 minuti. Evidenze di qualità moderata mostrano che ad una profilassi antibiotica somministrata prima dei 120 minuti precedenti l'incisione è associato un rischio significativamente più elevato di SSI rispetto alla somministrazione entro i 120 minuti (OR: 5.26; 95% CI: 3.29-8.39).

Vi sono anche evidenze di bassa qualità secondo le quali alla somministrazione di SAP dopo incisione è associato un rischio di SSI significativamente più elevato rispetto alla somministrazione prima dell'incisione (OR: 1,89; 95% CI: 95% CI:1.05-3.4). Ulteriori evidenze di bassa qualità mostrano che la somministrazione nei 60 minuti precedenti l'incisione non apporta né beneficio né danno per la riduzione dei tassi di SSI rispetto a quella nei 120-60 minuti. Allo stesso modo, la somministrazione della SAP nell'intervallo da 30 a 0 minuti prima dell'incisione non comporta né vantaggi né danni per la riduzione dei tassi di SSI rispetto alla somministrazione entro 60-30 minuti prima dell'inizio dell'incisione.

Ulteriori fattori considerati nella formulazione delle raccomandazioni

Valori e preferenze

Non è stato rilevato alcuno studio sui valori e le preferenze del paziente rispetto a questo intervento. Il GDG ha concluso che tutti i pazienti, il personale sanitario, le strutture e i responsabili politici favoriranno l'intervento per entrambe le raccomandazioni. A causa di considerazioni logistiche e pratiche, gli anestesisti tendono a somministrare la SAP in sala operatoria, spesso in prossimità dell’inizio dell’incisione, ma comunque ancora entro l’intervallo di 120 minuti raccomandato dal GDG.

Utilizzo delle risorse

Non ci sono costi aggiuntivi legati all’ottimizzazione dell’intervallo di tempo per la SAP. Tuttavia, il GDG ritiene importante definire le responsabilità della somministrazione tempestiva e per questo potrebbero essere necessarie ulteriori risorse. Deve essere erogata formazione in servizio che comprenda le migliori pratiche per la somministrazione della SAP. Per entrambe le raccomandazioni la fattibilità e l’equità non sono considerate questioni significative.

Limiti della ricerca

Il GDG ha messo in evidenza le limitate evidenze disponibili sul timing ottimale della SAP per prevenire le SSI e la necessità di ulteriori studi su questo argomento. In particolare, e in via altamente prioritaria, sono necessari RCT che mettano a confronto l’effetto di diversi intervalli di tempo nei 120 minuti precedenti l’incisione, ossia, 120-60 minuti vs. 60-0 minuti e 60-30 minuti vs. 30-0 minuti. Devono essere chiaramente indicati la durata della procedura, il protocollo di ri-somministrazione in base al farmaco scelto, così come il momento di infusione, la durata della stessa e il miglior timing preciso di somministrazione, tenuto conto delle emivite degli antibiotici.

La ricerca è necessaria anche per identificare il miglior timing in base alla tipicità degli interventi chirurgici. Sono inoltre necessari RCT ben progettati per studiare la relazione tra i parametri farmacocinetici e farmacodinamici degli agenti antimicrobici utilizzati per la SAP, compresi i livelli tessutali nel sito di incisione e i tassi di SSI. Il GDG ha osservato che non ci sono dati di elevata qualità che esaminano l’effetto dell’aggiustamento delle dosi o della ri-somministrazione intraoperatoria sui tassi di SSI. Sarebbe quindi importante condurre RCT che confrontino i dosaggi ottimali di antibiotici e i protocolli di ri-somministrazione.

Riferimenti

2. Zelenitsky SA, Ariano RE, Harding GKM, Silverman RE. Antibiotic pharmacodynamics in surgical prophylaxis: an association between intraoperative antibiotic
4.5 Preparazione meccanica intestinale e uso di antibiotici orali

<table>
<thead>
<tr>
<th>Raccomandazioni</th>
</tr>
</thead>
</table>
| 1. Il panel suggerisce che per ridurre il rischio di SSI in pazienti adulti sottoposti a chirurgia colorettale elettiva si utilizzi antibiotici per via orale in combinazione con la preparazione intestinale meccanica (MBP)
(Raccomandazione condizionale, evidenze di qualità moderata) |
| 2. Il panel raccomanda di non utilizzare la sola MBP (senza somministrazione orale di antibiotici) allo scopo di ridurre le SSI in pazienti adulti sottoposti a chirurgia colorettale elettiva.
(Raccomandazione forte, evidenze di qualità moderata) |

<table>
<thead>
<tr>
<th>Razionale delle raccomandazioni</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Complessivamente, evidenze di qualità moderata mostrano che la somministrazione preoperatoria di antibiotici per via orale in combinazione con la MBP riduce il tasso di SSI rispetto alla sola MBP. Da notare che nessuno degli studi esaminati riguardava gli effetti degli antibiotici per via orale, cioè senza combinare la loro somministrazione con la MBP. Tutti gli studi applicavano anche la profilassi antibiotica standard per via endovenosa. Inoltre, le evidenze disponibili dimostrano che non vi sono differenze tra i gruppi di intervento e quelli di controllo nel caso in cui si verifichino perdite anastomotiche. Questo risultato è importante perché può preoccupare la possibile maggiore frequenza delle perdite se non viene eseguita la MBP. Considerando la qualità moderata delle evidenze e degli effetti dimostrati, il GDG ha deciso di suggerire che, per ridurre il rischio di SSI, oltre alla profilassi antibiotica endovenosa standard, quando opportuno, si ricorra anche alla somministrazione preoperatoria di antibiotici per via orale in combinazione con la MBP.</td>
</tr>
<tr>
<td>2. Evidenze di moderata qualità dimostrano che la sola MBP preoperatoria non apporta vantaggi nella riduzione dei tassi di SSI rispetto a quanto osservato in assenza di MBP. Inoltre, le metanalisi indicano che non eseguire la MBP ha un effetto positivo non significativo nella riduzione del rischio di SSI. In aggiunta, le evidenze disponibili dimostrano che che non vi sono differenze nel verificarsi di perdite anastomotiche con o senza MBP. Pertanto, il GDG ha unanimemente convenuto di raccomandare che la sola MBP, senza somministrazione orale di antibiotici, non sia usata allo scopo di ridurre le SSI nella chirurgia colorettale elettiva.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Osservazioni</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Per MBP si intende la somministrazione preoperatoria di sostanze per indurre lo svuotamento intestinale e del contenuto del colon. Nella maggior parte degli studi le sostanze scelte per la MBP sono state il polietilenglicole e/o il fosfato di sodio. Tuttavia, negli studi i protocolli differivano in termini di dosaggio, timing di applicazione e digiuno. È stato sottolineato che la pulizia non ottimale del colon può essere più problematica della mancanza di preparazione intestinale.</td>
</tr>
<tr>
<td>• Tutti gli studi riguardavano pazienti adulti sottoposti a chirurgia colorettale; pertanto, l’efficacia di questi interventi non è dimostrata per i pazienti pediatrici.</td>
</tr>
<tr>
<td>• Oltre al regime MBP, negli studi variavano anche gli antibiotici per via orale e il farmaco scelto per la profilassi antibiotica endovenosa. In 8 studi, gli aminoglicosidi orali erano combinati con una copertura anaerobica [metronidazolo (1-5) o eritromicina (6-8)] e 3 studi (9-11) applicavano solo la copertura gram-negativa.</td>
</tr>
<tr>
<td>• Il GDG riconosce che è difficile fornire una affermazione universale sulla scelta dei farmaci antibiotici per via orale da utilizzare per la MBP. La combinazione di farmaci utilizzata deve garantire l’attività o contro i batteri gram-negativi o contro gli anaerobi. La scelta degli antimicrobici dovrebbe idealmente essere realizzata in base alla disponibilità locale di farmaci, ai dati aggiornati sulla resistenza all’interno della struttura e al volume dell’attività chirurgica.</td>
</tr>
</tbody>
</table>
Il GDG ha individuato possibili danni causati dall’ intervento di MBP, con diversi livelli di gravità. Tra questi: il disagio del paziente, le anomalie elettrolitiche e la potenziale disidratazione grave al momento dell’anestesia e dell’incisione.

Il GDG ha sottolineato la presenza di un’allerta della Food and Drug Administration statunitense che evidenzia come la nefropatia acuta da fosfati (un tipo di insufficienza renale acuta) sia un raro ma grave evento avverso associato alla somministrazione orale di fosfato di sodio per la pulizia dell’intestino (12).

Sono state espresse preoccupazioni anche in merito ai potenziali effetti negativi degli antibiotici utilizzati per via orale (ad esempio, alto rischio di reazione idiosincratica all’eritromicina). Un’ ulteriore preoccupazione era la resistenza antimicrobica come potenziale conseguenza involontaria di questo intervento. L’ efficacia degli antibiotici per via orale può diminuire a causa del loro uso diffuso, innescando così l’emergere di ceppi resistenti. Il GDG ha osservato che vi era una diffusa convinzione che si debbano utilizzare preferibilmente antibiotici non assorbibili. Nei confronti corrispondenti, in 8 su 11 RCT (1-8) è stata somministrata una combinazione di antibiotici non assorbibili e assorbibili. Due studi (9,10) utilizzavano non assorbibili e uno studio (11) solamente antibiotici assorbibili.

Il GDG ha sottolineato che l’intervento di somministrazione degli antibiotici per via orale con la MBP è solo per uso preoperatorio e non deve essere continuato dopo l’intervento. Questo intervento non deve essere definito "decontaminazione selettiva del tratto digerente" (SDD) per evitare confusioni con gli interventi messi in atto per prevenire la polmonite associata alla ventilazione in terapia intensiva.

Background

La preparazione ottimale dell'intestino dei pazienti da sottoporre a chirurgia colorettale è stata oggetto di dibattito per molti anni. La questione principale era se la pulizia meccanica dell'intestino dovesse rientrare nel regime preoperatorio standard. La MBP prevede la somministrazione preoperatoria di sostanze che provocano lo svuotamento del contenuto intestinale e del colon. I catartici più comunemente usati per la MBP sono il polietilenglicole e il fosfato di sodio. Si ipotizzava che la pulizia dei colon dal suo contenuto fosse necessaria per la sicurezza dell’intervento e che potesse ridurre il rischio di SSI diminuendo la massa fecale intraluminale e, di conseguenza, la carica batterica nel lume intestinale. Inoltre, si pensava che potesse evitare la possibile lacerazione meccanica da passaggio di feci dure di un’anastomosi costruita. Infine, si riteneva che la MBP agevolasse la manipolazione dell'intestino durante gli interventi.

Un altro aspetto della preparazione preoperatoria dell'intestino che si è evoluta nel corso degli ultimi decenni riguarda la somministrazione di antibiotici per via orale. A partire dagli anni Trenta del secolo scorso gli antibiotici per os sono stati utilizzati con l'obiettivo di diminuire la carica batterica intraluminale. Tuttavia, questi farmaci avevano generalmente un basso assorbimento, raggiungevano elevate concentrazioni intraluminali e agivano contro la flora (anaerobica e aerobica) presente nel colon. L'aggiunta di antibiotici orali aventi come bersaglio selettivo i microrganismi potentemente patogeni del tratto digerente, soprattutto batteri gram-negativi, S. aureus e lieviti, è nota anche come "decontaminazione selettiva del tratto digerente". Questo termine deriva dalla terapia intensiva e di solito si riferisce ad un regime di tobramicina, anfotericina e polimiossina combinati con una somministrazione di un antibiotico endovenoso, spesso cefotaxime. Per la convinzione che gli antibiotici per via orale funzionasseo solo quando l'intestino era stato ripulito del suo contenuto, al regime di antibiotici orali era spesso affiancata la MBP.

Alcune organizzazioni hanno emesso raccomandazioni per quanto riguarda la MBP preoperatoria e la somministrazione degli antimicrobici per via orale (Tabella 4.5.1). Ad esempio SHEA/IDSA raccomanda di utilizzare la MBP per gli interventi del colon-retto, ma solo in combinazione con gli antibiotici. Tuttavia, queste raccomandazioni non si basano su revisioni sistematiche della letteratura, metanalisi o su una rigorosa valutazione della qualità delle evidenze disponibili.
Box 4.5.1- Raccomandazioni sulla MBP e la somministrazione di antimicrobici orali secondo le linee guida disponibili

<table>
<thead>
<tr>
<th>Linee Guida</th>
<th>Raccomandazioni sulla MBP e la somministrazione di antimicrobici orali</th>
</tr>
</thead>
</table>
| SHEA/IDSA practice recommendation (2014) (13) | Utilizzare una combinazione di agenti antimicrobici parenterali e di a microbici per via orale per ridurre il rischio di SSI a seguito di interventi di chirurgia colorettale.
 i) L’ulteriore riduzione delle SSI ottenuta con la MBP non è stata studiata, ma i dati a supporto dell’uso degli antimicrobici per via orale sono stati ottenuti tutti in combinazione con la MBP.
 ii) La MBP senza antimicrobici per via orale non riduce il rischio di SSI. |
| NICE (2008) (14) | Non fare ricorso alla MBP di routine per ridurre il rischio di SSI |

A seguito di un’analisi approfondita delle fonti e della potenza delle evidenze presenti nelle attuali linee guida, il GDG ha deciso di effettuare una revisione sistematica per valutare i dati disponibili sull’efficacia degli antibiotici per via orale e della MBP in fase preoperatoria per la prevenzione delle SSI.

Sintesi delle evidenze

Scopo della revisione delle evidenze (Appendice web 6) era di valutare se la MBP preoperatoria fosse più efficace nel ridurre il rischio di SSI rispetto alla non preparazione assoluta. La revisione ha valutato anche se la combinazione della somministrazione orale preoperatoria di antibiotici con MBP, in aggiunta alla profilassi antibiotica preoperatoria endovenosa standard è più efficace della sola MBP. La popolazione target erano i pazienti di qualsiasi età sottoposti a trattamento di chirurgia colorettale elettiva. L’outcome primario era la comparsa di SSI e mortalità correlata. I dati sulle perdite anastomotiche sono stati analizzati separatamente come outcome secondario. Il corpus di prove recuperate riguardava pazienti adulti e non era disponibile alcuno studio sulla popolazione pediatrica.

Sono stati individuati in totale 24 RCT (1-11,15-27) che confrontavano la MBP con la non MBP oppure l’intervento combinato di MBP e antibiotici per via orale con MBP e senza antibiotici per via orale. Sono stati identificati in totale 11 RCT (1-11), per complessivi 2416 pazienti, che confrontavano la MBP preoperatoria combinata con la somministrazione di antibiotici per via orale con la sola MBP. Evidenze di qualità moderata mostrano che la MBP preoperatoria combinata con antibiotici per via orale riduce il tasso di SSI rispetto alla sola MBP (OR: 0,56;95% CI: 95% CI:0,37-0,83). Il ricorso a questo intervento, non apporta benefici né danni nel caso di perdita anastomotica (OR: 0,64;95% CI: 0,33-1,22).

Sono stati identificati in totale 13 RCT (15-27), per complessivi 4869 pazienti, che confrontavano la MBP con nessuna MBP. Evidenze di qualità moderata mostrano che la MBP preoperatoria non apporta né benefici né danni per la riduzione dei tassi di SSI rispetto alla non esecuzione (OR: 1,31;95% CI: 1,00-1,72). Le evidenze disponibili dimostrano inoltre che non c’è nessuna differenza nella presenza di perdite anastomotiche con o senza MBP (OR: 1.03;95% CI: CI:0,73-1,44).

Tra gli studi che confrontavano la MBP combinata con gli antibiotici orali rispetto alla sola MBP, soltanto due (8,18) riportavano dati sulla mortalità specificamente attribuibile alle SSI. Entrambi riportavano tassi di mortalità più bassi quando venivano somministrati gli antibiotici, anche se non riportavano alcun test per la significatività statistica. Dei 13 studi che confrontavano la MBP con nessuna MBP, 3 riportavano dati sulla mortalità specificamente attribuibile ad SSI (18, 23, 27) ma non rilevavano alcuna differenza statistica nei tassi di mortalità.

Nessuno degli RCT individuati valutava nello specifico il ruolo degli antibiotici per via orale senza
un regime di MBP, ma alcuni studi osservazionali (28-30), che utilizzavano le banche dati delle cartelle cliniche, suggerivano che gli antibiotici orali possono essere efficaci nel ridurre il rischio di SSI, indipendentemente dal fatto di essere combinati con la MBP. Inoltre, uno studio prospettico randomizzato (31) sosteneva fortemente l’uso di antibiotici per via orale come parte integrante di un bundle di interventi, ma in combinazione con la MBP. In questo studio, la combinazione di somministrazione preoperatoria di antibiotici per via orale e MBP era stata omessa in un braccio e confrontata con un regime standard di antibiotici per via orale e MBP, mentre entrambi i bracci avevano ricevuto antibiotici per via endovenosa prima dell’incisione chirurgica.

Ulteriori fattori considerati nella formulazione delle raccomandazioni

Valori e preferenze
Uno studio (9) ha riscontrato una maggiore incidenza di diarrea quando sono stati somministrati antibiotici per via orale. Un altro studio (1) ha valutato la tolleranza del paziente con 3 diversi regimi antibiotici oralici. I pazienti hanno segnalato più sintomi gastrointestinali (nausea e vomito) al momento della preparazione preoperatoria quando venivano loro somministrati 3 dosi di antibiotici per via orale rispetto a nessun antibiotico o una sola dose. Tra gli studi che mettono a confronto la MBP con nessuna MBP, 4 hanno riportato disagi per il paziente. Berrera e colleghi (15) hanno riferito che la metà dei pazienti (50%) sottoposti a MBP dichiaravano una tolleranza ragionevole o scarsa. Le cause principali erano la nausea (56%), il vomito (23%) e il dolore da crampi addominali (15%). In un altro studio (16) comprendente 89 pazienti sottoposti a MBP, il 17-28% si lamentava di disturbi simili, che nell’11% dei casi avevano portato all’interruzione del procedura. In un altro studio (17), la MBP si associava al disagio per il 22% dei pazienti, per la difficoltà nel bere la preparazione, la nausea, il vomito e il dolore addominale. Zmora e colleghi (27) hanno rilevato che la diarrea nell’immediato postoperatoro era più diffusa nel gruppo MBP rispetto al gruppo non-MBP, con significatività statistica. Il GDG ha riconosciutono che alcuni pazienti, ad esempio gli anziani o i disabili, potrebbero preferire di non sottoporsi a MBP, indipendentemente dal risultato.

Utilizzo delle risorse
È stato riconosciutnato che la preparazione intestinale meccanica, compresa la somministrazione di antibiotici per via orale, comporta un carico di lavoro supplementare dato che l’intervento richiede risorse organizzative per garantire l’adeguatezza delle somministrazioni (ad esempio, istruzioni scritte chiare per i pazienti e formazione per il personale). Inoltre, il costo iniziale è più elevato rispetto al non intraprendere questo intervento, ma nessuno degli studi inclusi riportava dati sui costi e sul rapporto costo-efficacia. Tuttavia, il GDG ha concluso che i benefici derivanti dalla somministrazione di antibiotici per via orale controbilanciano questi aspetti. Gli antibiotici comunemente utilizzati per l’intervento (eritromicina, metronidazolo e un aminoglicoside) sono generalmente poco costosi e prontamente disponibili, anche nei LMIC.

Limiti della ricerca
Il GDG ha sottolineato che le evidenze disponibili sono sufficienti unicamente per la sola MBP. Sono quindi necessarie ulteriori ricerche sugli effetti preventivi delle SSI degli antibiotici per os senza MBP, in particolare, RCT ben progettati che confrontino la profilassi antibiotica orale accompagnata da quella endovenosa rispetto alla sola profilassi endovenosa. Il GDG ha inoltre osservato che vi sono limitate evidenze del ruolo di questi interventi sui pazienti sottoposti a procedure laparoscopiche. Tuttavia, alcuni studi osservazionali su popolazioni miste che avevano subito un trattamento laparoscopico si tradizionale, suggerivano che la MBP apportava vantaggi ad entrambi i gruppi. Recentemente è stato pubblicato uno studio su questo argomento, che ha mostrato una significativa riduzione di SSI in pazienti laparoscopici che avevano assunto antibiotici per via orale in aggiunta alla MBP e alla profilassi antibiotica endovenosa standard (32). Tuttavia, non si è potuto includere questo studio nella revisione sistematica in quanto non rientrante nei limiti temporali prefissati.

Riferimenti

22. Miettinen RP, Laitinen ST, Makela JT, Faakkonen ME. Bowel preparation with oral

4.6 Tricotomia

Raccomandazione
Il gruppo raccomanda che ai pazienti da sottoporre ad intervento chirurgico non venga effettuata la tricotomia oppure, se assolutamente necessario, i peli vengano rimossi soltanto con i tricotomi. La rasatura è sempre fortemente sconsigliata, sia nel pre-operatorio che in sala. (Raccomandazione forte, qualità dell’evidenza moderata.)

Razionale della raccomandazione
- Per la formulazione della raccomandazione, il GDG ha ritenuto che la meta-analisi che confrontava la non rimozione dei peli o la rimozione con i tricotomi contro la rasatura forse la più rilevante. Evidenze di qualità moderata dimostrano un chiaro beneficio sia della non rimozione dei peli che della sforbiciatura rispetto alla rasatura, con un significativo decremento del rischio di SSI.
- Di conseguenza, il GDG ha approvato all’unanimità di raccomandare che i peli o non vengano rimossi oppure, se assolutamente necessario, vengano tagliati con i tricotomi e che la forza di questa raccomandazione fosse forte.

Osservazioni
- Il corpus delle evidenze recuperate si focalizzava sui pazienti adulti e non c’erano studi disponibili sulla popolazione pediatrica. Tuttavia il GDG ritiene che queste raccomandazioni siano valide anche per i pazienti pediatrici.
- Quando analizzati separatamente, non c’erano differenze significative tra il taglio con i tricotomi e la rasatura rispetto alla non rimozione dei peli, ma il taglio con i tricotomi si è rivelato significativamente positivo se confrontato alla rasatura. Il GDG ha deciso che la non rimozione e il taglio con i tricotomi dei peli dovessero essere confrontati insieme rispetto alla rasatura poiché sono simili in natura.
- È stato notato che soltanto uno studio (1) confrontava diversi momenti dell’esecuzione della tricotomia (notte precedente rispetto al giorno dell’intervento sia per la rasatura che per il taglio). Questo studio non dimostrava evidenze chiare che favorissero alcuno dei momenti per ciascun metodo. Per questo motivo, il GDG ha concordato di non fornire alcuna raccomandazione rispetto al momento della tricotomia. Tuttavia è stato riconosciuto che se si desse la possibilità, l’approccio più pratico e sicuro è il momento poco precedente l’intervento.
- Non sono stati identificati studi che valutassero l’effetto dell’ambiente in cui si esegue la tricotomia (sala operatoria, reparto o casa) con l’outcome SSI. Quindi, il GDG ha concordato di non esprimere alcuna raccomandazione riguardante il luogo in cui si debba eseguire quando questa sia necessaria.
- Il GDG non ha identificato un qualsiasi danno legato alla mancata tricotomia o all’utilizzo dei tricotomi.

Background
La rimozione dei peli dal sito destinato all’incisione è stata tradizionalmente parte della preparazione di routine dei pazienti da sottoporre ad intervento chirurgico. La tricotomia può essere necessaria per facilitare un’adeguata esposizione e la marcatura preoperatoria della cute. Inoltre, la sutura e l’applicazione delle medicazioni possono risultare complicate dalla presenza di peli. Oltre a questi aspetti pratici, il pelo è stato associato ad una mancanza di pulizia e ad una potenziale causa di SSI. C’è anche la convinzione opposta che la rimozione dei peli aumenti il rischio di SSI perché causa di microscopici traumi della pelle. Per ridurre al minimo il potenziale di traumi della pelle, per la tricotomia preoperatoria è stato proposto l’utilizzo di tricotomi invece che dei rasi. Al contrario dei rasi, che implicano lo scorrimento di una lama affilata direttamente sulla pelle, i tricotomi tagliano il pelo vicino alla pelle senza effettivamente toccarla. Un terzo metodo di rimozione dei peli consiste nell’applicazione di creme depilatorie che contengono agenti chimici. Il rovescio della
medaglia dell’utilizzo di queste creme è la necessità di lasciarle in posa per circa 15-20 minuti affinché il pelo si sciolga oltre alle potenziali reazioni allergiche. Una revisione Cochrane pubblicata nel 2009 e aggiornata nel 2011, non ha rilevato differenze statisticamente significative nei tassi di SSI tra interventi con tricotomia e non. Al contrario, sono stati rilevati danni significativi confrontando la tricotomia eseguita con i rasoi rispetto a quella eseguita con i tricotomi (2).

Tra le linee guida disponibili, quattro raccomandano esplicitamente di evitare la tricotomia di routine come parte delle misure preoperatorie per prevenire le SSI (3-6). Tutte le altre linee guida raccomandano di non utilizzare rasoi. Se si utilizzano tricotomi elettrici, deve essere utilizzata una testina monouso (Tabella 4.6.1). Solo alcune linee guida offrono una valutazione circa la qualità dell’evidenza.

Box 4.6.1 - Raccomandazioni sulla tricotomia secondo le linee guida disponibili

<table>
<thead>
<tr>
<th>Linee Guida</th>
<th>Raccomandazioni sulla rimozione dei peli</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHEA/IDSA (2014) (6)</td>
<td>I peli non devono essere rimossi dal sito operatorio a meno che la loro presenza non interferisca con l’operazione. Non utilizzare rasoi. Se la tricotomia è necessaria, eseguirla fuori dalla sala operatoria utilizzando tricotomi o creme depilatorie.</td>
</tr>
<tr>
<td>NICE (2013) (7)</td>
<td>Le evidenze che la tricotomia preoperatoria riduca i tassi di SSI sono insufficienti. Per rimuovere i peli non si dovrebbero utilizzare rasoi perché aumentano il rischio di SSI. Se i peli devono essere rimossi, utilizzare tricotomi elettrici con testina monouso il giorno dell’intervento poiché il taglio dei peli potrebbe essere associato ad una riduzione dei tassi di SSI.</td>
</tr>
<tr>
<td>Health Protection Scotland Bundle (2013) (3)</td>
<td>Evitare di rimuovere i peli. Se è indispensabile, utilizzare tricotomi monouso.</td>
</tr>
<tr>
<td>UK High impact intervention care bundle (2011) (8)</td>
<td>Se la rimozione dei peli è necessaria, utilizzare tricotomi con testina monouso ed eseguire il più possibile a ridosso delle procedure operatorie.</td>
</tr>
</tbody>
</table>

SHEA: Society for Healthcare Epidemiology of America; IDSA: Infectious Diseases Society of America; SSI: surgical site infection; NICE: National Institute for Health and Care Excellence; UK: United Kingdom.

A seguito di un’analisi approfondita delle fonti e della potenza delle evidenze nelle attuali linee guida, i membri del GDG hanno deciso di condurre una revisione sistematica per verificare la disponibilità di evidenze sulla necessità e sul corretto metodo di rimozione dei peli.

Sintesi delle evidenze

Scopo della revisione delle evidenze (Appendice web 7) era di scoprire se il metodo e il timing della tricotomia (utilizzando tricotomi creme o rasoi) o la non rimozione dei peli influivano sull’incidenza delle SSI. La popolazione target erano i pazienti di tutte le età sottoposti a intervento chirurgico. L’outcome principale era l’insorgenza di SSI e mortalità correlata.

Sono stati identificati in totale 15 RCT o trial quasi-randomizzati (1,9,22) che confrontavano gli effetti della tricotomia preoperatoria rispetto alla non rimozione dei peli o alle diverse tipologie di
rimozione (rasatura, taglio con il tricotomo o applicazione di creme depilatorie). Sono state condotte meta-analisi per valutare i seguenti confronti: rasatura, taglio e crema depilatoria singolarmente vs. nessuna rimozione dei peli; rasatura vs. taglio e rasatura vs. crema depilatoria. Poiché la non rimozione dei peli e il taglio sono simili in termini di potenziale ridotto di traumi cutanei microscopici, è stata eseguita un’ulteriore analisi combi- nando la non rimozione dei peli e il taglio vs. la rasatura.

Evidenze di qualità da bassa a molto bassa mostrano che la rasatura, il taglio o l’uso di crema depilatoria non apportano né benefici né danni legati alla riduzione della frequenza di SSI rispetto alla non rimozione dei peli (OR: 1,78; 95% CI: 0,96-3,29; OR: 1,00; 95% CI: 0,06-16,34; E OR: 1,02; 95% CI: 0,42-2,49, rispettivamente). Tuttavia, quando i peli vengono rimossi, ci sono evidenze di bassa qualità che dimostrano che il taglio ha un significativo vantaggio nel ridurre il tasso di SSI rispetto alla rasatura (OR: 0,51; 95% CI: 0,29-0,91). Evidenze di scarsa qualità dimostrano che l’uso di creme depilatorie non apporta né vantaggio né danni rispetto alla rasatura per la prevenzione delle SSI (OR: 2,78; 95% CI: 0,86-9,03). Quando nella meta-analisi sono stati confrontati il taglio e la non rimozione dei peli, evidenze di moderata qualità mostravano che entrambi sono associati ad un rischio significativamente più basso di SSI rispetto alla rasatura (OR: 0,51; 95% CI: 0,34-0,78). Prove di qualità moderata dimostrano che la rimozione dei peli il giorno prima dell’intervento chirurgico non influenza il tasso di SSI rispetto alla depilazione effettuata il giorno dell’intervento (OR: 1,22; 95% CI: 0,44-3,42).

Il corpus delle evidenze recuperate riguardava solo pazienti adulti e non c’erano studi disponibili sulla popolazione pediatrica. La ricerca bibliografica non ha identificato studi che segnalassero casi di mortalità attribuibile a SSI.

Ulteriori fattori considerati nella formulazione delle raccomandazioni

Valori e preferenze

Gli studi che valutano le preferenze del chirurgo o del paziente per la rimozione dei peli mostrano risultati diversificati. Ilankov e colleghi hanno studiato le preferenze del paziente e del chirurgo prima della chirurgia maxillofacciale e hanno mostrato che i pazienti preferiscono non rimuovere i peli piuttosto che raderli, mentre la valutazione dei chirurghi rispetto alle difficoltà di chiusura delle ferite non è differente tra i due metodi (18).

Il GDG ha riconosciuto che le preferenze sia dei pazienti sia dei chirurghi possono variare a seconda della zona del corpo. Alcuni membri hanno espresso le seguenti opinioni:

- I chirurghi possono essere restii ad usare il tricotomo nella zona genitale maschile
- Le donne preferiscono la rasatura per l’intervento chirurgico in zona genitale o addirittura arrivare in ospedale già depilate a causa di norme culturali.
- I chirurghi possono preferire la rimozione dei peli per la preoccupazione che i quelli lunghi interferiscano con l’intervento chirurgico e si incollino ai cerotti.

Pur riconoscendo questa variabilità degli approcci e gli aspetti culturali, il GDG ha sottolineato che queste preferenze potrebbero essere modificate con una campagna di sensibilizzazione che evidenzi i benefici della raccomandazione e i danni delle pratiche di rasatura, congiuntamente a strategie di attuazione forti. Inoltre, il GDG era convinto che i valori tipici della popolazione target rispetto all’outcome SSI avrebbero probabilmente favorito l’intervento.

Utilizzo delle risorse

Il GDG ha fatto osservare che evitare la rimozione dei peli non comporta alcun costo né impegni per il personale. I tricotomi sono costosi e potrebbe essere difficile procurarli nei LMIC. È generalmente consigliabile utilizzare tricotomi monouso, anche questi di difficile reperimento nei LMIC. Da notare, che quando devono essere riutilizzati, le testine possono essere molto difficili da pulire e decontaminare. Se è previsto il riutilizzo, il GDG suggerisce che per la decontaminazione si seguano le procedure locali di prevenzione delle infezioni, tenendo conto delle istruzioni di base del processo generale: smontare con cura le lame; pulire con acqua e sapone usando un panno e indossando i DPI del caso; asciugare con un panno pulito e strofinare con alcool, usando un altro panno pulito. Eseguita la procedura, smaltire i panni e dispositivi di protezione individuale, lavarsi le mani e riporre lo strumento in un contenitore pulito e coperto, in un luogo asciutto per evitarne la contaminazione.
Limiti della ricerca

Anche se le evidenze a sostegno della raccomandazione sembrano sufficienti, il GDG ha dato le seguenti indicazioni per ulteriori ricerche su questo argomento. Sono necessari studi per valutare il timing ottimale e il luogo più adeguato (reparto vs. casa) per la tricotomia, quando ritenuta necessaria dal chirurgo. Sarebbe importante anche effettuare indagini sull’accettabilità di pazienti e chirurghi per quanto riguarda la rimozione (o meno) dei peli prima dell’intervento chirurgico, in particolare per le zone del corpo dove le preferenze possono variare, ad esempio, i genitali per le femmine e l’area maxillofacciale per i maschi.

Si devono studiare i metodi migliori e più accettabili di rimozione dei peli nelle realtà con risorse limitate, comprese le soluzioni a basso costo. In particolare, sono necessari studi che prestino particolare attenzione all’uso di tricotomi nei LMIC, per stimolare la ricerca sulla progettazione e la produzione di strumenti ad un prezzo accessibile per stimolare la ricerca sulla progettazione e la particolare a
de rimozione dei peli nelle realtà con risorse limitate, comprese le soluzioni a basso costo.

Per tutti gli ambiti serve ricerca per sviluppare e
do stimolare la ricerca sulla progettazione e la

di rimozione dei peli nelle realtà con risorse limitate, comprese le soluzioni a basso costo.

Riferimenti

4.7 Preparazione del sito chirurgico

Raccomandazione

Per la preparazione della cute del sito chirurgico di un paziente da sottoporre ad intervento, il panel raccomanda soluzioni antisettiche alcoliche a base di GHG.

(Raccomandazione forte, qualità delle evidenze da bassa a moderata)

Razionale della raccomandazione

- Evidenze di qualità moderata mostrano che, per ridurre le SSI, l’uso di soluzioni antisettiche a base alcolica per la preparazione della cute del sito chirurgico è più efficace rispetto all’uso di soluzioni acquose. Una meta-analisi degli studi disponibili (evidenze di bassa qualità) ha dimostrato che una soluzione alcolica a base di CHG è più efficace nella riduzione dei tassi di SSI rispetto ad una soluzione alcolica a base di iodopovidone (PVP-I). Di conseguenza il GDG ha concordato di raccomandare l’utilizzo di soluzioni antisettiche alcoliche, preferibilmente a base di CHG per la preparazione chirurgica della cute intatta. La forza di questa raccomandazione è stata valutata forte.

- Il GDG si è interrogato sul formulare questa raccomandazione soltanto per i pazienti adulti o estenderla a tutti i pazienti. Il corpus delle evidenze si focalizzava sui pazienti adulti. La popolazione pediatrica non era rappresentata poiché la maggior parte dei prodotti commerciali disponibili non danno indicazioni per l’utilizzo su questi pazienti, a causa di mancanza di studi su questa popolazione. Per contro, il GDG ha sottolineato che è improbabile che in futuro vengano rese disponibili una grande quantità di evidenze sulla popolazione pediatrica, soprattutto per motivi etici.

Osservazioni

- Il corpus delle evidenze recuperate si focalizzava sui pazienti adulti e non c’erano studi disponibili sulla popolazione pediatrica. Pertanto, l’efficacia di questo intervento non è provata per i pazienti pediatrici.

- Anche se l’intervallo di tempo per la revisione sistemica era stato stabilito per le pubblicazioni edite tra il 1990 e il 15 Agosto 2014, dopo averne discusso con il Comitato OMS per la revisione delle linee guida e il GDG, è stato in via eccezionale preso in considerazione anche un importante studio pubblicato il 4 Febbraio 2016. Il GDG era fiducioso che nessun altro studio di rilievo fosse stato pubblicato dopo che la revisione era stata definita e che di conseguenza la ricerca non fosse completamente aggiornata.

- Sulla base degli studi disponibili, è stata condotta una sotto-analisi dei confronti delle soluzioni antisettiche a base alcolica vs. quelle a base acquosa. E’ stato osservato un significativo beneficio nel ridurre il rischio di SSI con le soluzioni alcoliche a base di CHG rispetto alle soluzioni acquose a base di PVP-I. Non sono state rilevate differenze sostanziali tra soluzioni a base di alcol e soluzioni acquose di PVP-I. La maggior parte degli studi inclusi utilizzava alcol isopropilico ad una concentrazione del 70-74% e non Wollf 0-4% quella dei CHG. A causa di questa eterogeneità e della mancanza di dati che confermino una qualsiasi scelta, il GDG non ha ritenuto conveniente inserire nella raccomandazione una dichiarazione riguardante la concentrazione dei composti antisettici.

- Del lavaggio della cute del paziente con detergenti o antisettici si parla nel capitolo 4.1 Questa attività deve essere svolta in un momento diverso e fuori dalla sala operatoria, mentre la preparazione della cute del sito chirurgico viene effettuata immediatamente prima dell’intervento, all’interno della sala.

- Il GDG ha identificato possibili danni associati all’utilizzo di soluzioni a base alcolica ed è stato sottolineato che queste non devono essere utilizzate sui neonati o entrate in contatto con le mucose e gli occhi. Le soluzioni di CHG non devono entrare in contatto con il cervello, le meningi, gli occhi e l’orecchio medio. Poiché l’alcol è altamente infiammabile, le preparazioni antisettiche a base alcolica possono prendere fuoco se utilizzate in presenza di diatermia e devono quindi essere lasciate asciugare per evaporazione. Prima di operare è quindi consigliabile controllare che i teli non siano saturi di alcol e che le soluzioni a base alcolica non abbiano formato una pozza sotto il paziente. Quando possibile, bisogna tener conto delle allergie (ad esempio al PVP-I) e ricordare che per il CHG esiste un potenziale rischio di irritazione cutanea. Il personale di sala deve essere formato e addestrato sui potenziali danni associati alle soluzioni utilizzate per la preparazione del sito chirurgico.
Background

Per preparazione del sito chirurgico si intende il trattamento preoperatorio della cute integra del paziente all’interno della sala operatoria. La preparazione comprende non soltanto il punto preciso dove si intende eseguire l’incisione chirurgica, ma anche un’area più vasta della cute del paziente. Scopo di questa procedura è di ridurre al minimo la carica microbica sulla cute del paziente prima di incidere la barriera cutanea. Gli agenti antibatterici più ampiamente utilizzati comprendono il CHG e il PVP-I in soluzione alcolica, che sono efficaci contro un'ampia gamma di batteri, funghi e virus. Tuttavia, vengono ampiamente utilizzate anche soluzioni acquose, in particolare quelle contenenti iodofori, soprattutto nei Paesi in via di sviluppo.

Le tecniche di applicazione per la preparazione preoperatoria del sito chirurgico sono un tema altrettanto interessante.

Tuttavia, tre studi clinici sugli effetti delle tecniche applicative di composti antisettici confrontabili hanno mostrato che non esistono differenze nei tassi di infezione del sito chirurgico (1-3). Nonostante le attuali conoscenze sulle attività antibatteriche di molti agenti antisettici e delle tecniche applicative, non è chiaro quale sia il miglior approccio alla preparazione del sito chirurgico (4,5).

Diverse linee guida, come quelle pubblicate da SHEA/IDSA (6), NICE (7) o the Royal College of Physicians of Ireland (8), per la preparazione del sito chirurgico raccomandano l’utilizzo di soluzioni a base alcolica (Tabella 4.7.1) ma queste raccomandazioni non sono basate su una revisione sistematica della letteratura, metà-analisi o valutazioni della qualità delle evidenze disponibili.

Box 4.6.1- Raccomandazioni sulla preparazione della cute del sito chirurgico secondo le linee guida disponibili

<table>
<thead>
<tr>
<th>Linee Guida</th>
<th>Raccomandazioni sulla preparazione della cute del sito chirurgico</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHEA/IDSA (2014) (6)</td>
<td>Lavare e pulire la cute intorno al sito di incisione. Per la preparazione della pelle utilizzare due agenti contenenti alcol, a meno che non esistano controindicazioni.</td>
</tr>
<tr>
<td>NICE (2013) (7)</td>
<td>PVP-I o CHG, anche se le soluzioni a base alcolica possono essere più efficaci e rispetto a quelle owe. Non è certo quale sia l’antisettico più efficace per la preparazione della cute prima dell’incisione chirurgica.</td>
</tr>
<tr>
<td>The Royal College of Physicians of Ireland (2012) (8)</td>
<td>HG al 2% in soluzione di alcol isopropilico al 70%; PVP-I con alcol per i pazienti allergici al CHG.</td>
</tr>
<tr>
<td>USA Institute of Health Improvement: surgical site infection (2012) (9)</td>
<td>Una combinazione di iodoforo o di CHG con alcool è meglio del solo iodopovidone.</td>
</tr>
<tr>
<td>Health Protection Scotland Bundle (Ottobre 2013) (10)</td>
<td>CHG al 2% in soluzione di alcol isopropilico al 70%; PVP-I con alcol per i pazienti allergici al CHG.</td>
</tr>
<tr>
<td>UK High impact intervention care bundle (2011) (11)</td>
<td>CHG al 2% in soluzione di alcol isopropilico al 70%; PVP-I con alcol per i pazienti allergici al CHG.</td>
</tr>
</tbody>
</table>

PVP-I Iodopovidone; CHG: Clorexidina Gluconato; SHEA: Society for Healthcare Epidemiology of America; IDSA: Infectious Diseases Society of America; NICE: National Institute for Health and Care Excellence
A seguito di un’analisi approfondita delle fonti e della potenza delle evidenze nelle attuali linee guida, i membri del GDG hanno deciso di condurre una revisione sistematica per verificare le evidenze disponibili circa l’efficacia di soluzioni ed agenti antisettici utilizzati per la preparazione della cute del sito chirurgico.

Sintesi delle evidenze
Scopo della revisione delle evidenze (Appendice web 8) era di Confrontare gli effetti di diverse soluzioni (base alcolica vs. base acquosa) e agenti antisettici (CHG vs. PVP-I) per la preparazione della cute del sito chirurgico al fine di prevenire le SSI. La popolazione target comprendeva paziente di tutte le età sottoposti ad intervento chirurgico. L’outcome principale era l’insorgenza di SSI e mortalità correlata.

Sono stati identificati in totale 17 RCT (2, 12-17) che confrontavano gli agenti antisettici (PVP-I e GHG) in soluzioni a base alcolica o acquosa. Secondo gli studi selezionati, sono stati valutati i seguenti confronti:

1. Soluzioni antisettiche a base alcolica VS. soluzioni a base acquosa
 a) CHG in soluzione alcolica vs. PVP-I in soluzione acquosa
 b) PVP-I in soluzione alcolica vs. CHG in soluzione acquosa

2. CHG e PVP-I entrambi in soluzione alcolica

Evidenze di qualità moderata mostrano che, per ridurre il rischio di SSI, le soluzioni antisettiche a base alcolica sono nel complesso più efficaci se confrontate con quelle acquose (OR: 0.60; 95% CI:0.45–0.78). Più nello specifico, un’evidenza di bassa qualità mostra una riduzione significativa del rischio di SSI utilizzando soluzioni alcoliche a base di CHG rispetto alle soluzioni alcoliche a base di PVP-I (OR: 0.58; 95% CI: 0.42–0.80). Evidenze di qualità moderata mostrano anche benefici significativi nella riduzione dei tassi di SSI utilizzando soluzioni alcoliche di CHG rispetto alle soluzioni acquose di PVP-I (OR 0.65; 95% CI: 0.47–0.90). Evidenze di qualità molto bassa mostrano invece che non ci sono differenze significative tra soluzioni a base di PVP-I alcoliche e acquose (OR 0.61; 95% CI:0.19–1.92).

La ricerca bibliografica non ha identificato studi che per la preparazione chirurgica della cute utilizzassero soluzioni acquose di CHG. Il corpus delle evidenze recuperate si focalizzava sul paziente adulto e non c’erano studi disponibili sulla popolazione pediatrica. Inoltre, la maggior parte dei prodotti commerciali disponibili non hanno indicazioni per l’uso sul paziente pediatrico a causa della mancanza di studi su questa popolazione. La ricerca bibliografica non ha identificato studi che riportassero dati sulla mortalità correlata.

Ulteriori fattori considerati nella formulazione delle raccomandazioni

Valori e preferenze
Non è stato identificato alcuno studio riguardante i valori e le preferenze dei pazienti per quanto riguarda questo intervento. Il GDG ha concluso che la maggior parte dei pazienti sarebbero favorevoli a questo intervento al fine di ridurre il rischio di SSI.

Tuttavia l’uso di alcol potrebbe venire rifiutato dai pazienti e/ o dagli operatori sanitari per motivi religiosi. La questione è stata affrontata come parte del programma di lavoro OMS “Clean Care is Safer Care” e a questo argomento è stato dedicato un capitolo delle linee guida OMS sull’igiene delle mani nell’assistenza sanitaria (28), che raccomandano l’uso preferenziale della frizione alcolica delle mani. Coinvolgere i leader culturali e religiosi (per esempio nella campagna sull’igiene delle mani nelle strutture sanitarie) si è dimostrato utile per superare queste barriere e trovare soluzioni. In effetti un esempio incoraggiante è la dichiarazione rilasciata dalla Direzione della Scuola Musulmana della Lega Mondiale Islamica durante il meeting dell’Alto Consiglio Islamico tenutosi alla Mecca, Arabia Saudita, nel Gennaio 2002: “È consentito l’utilizzo di medicamenti che contengono alcol, in qualsiasi percentuale necessaria alla loro fabbricazione, se non ci sono alternative. L’alcol può essere utilizzato per la pulizia esterna delle ferite, per uccidere i germi, e per creme e unguenti per uso esterno.” Potrebbe essere necessario riprendere la discussione con i leader religiosi ed i singoli pazienti per quanto riguarda la raccomandazione di utilizzare soluzioni a base alcolica per la preparazione chirurgica della cute.

Utilizzo delle risorse
Il GDG ha evidenziato che la disponibilità di soluzioni a base alcolica nei LMIC è limitata, soprattutto se combinate con un composto antisettico. Questi prodotti commerciali possono rappresentare un peso economico per le strutture sanitarie o per i pazienti se viene loro richiesto di farsene carico. Il GDG ha discusso circa l’implementazione di questa raccomandazione nei LMIC ed ha detto che la...
produzione locale possa essere un’opzione più sostenibile e fattibile in queste realtà, a patto che sia messo in atto un adeguato controllo della qualità. Per esempio, nel contesto del Programma di sicurezza per la Chirurgia, sono state prodotte istruzioni per la produzione locale di una preparazione alcolica a base di CHG, implementate dall’OMS in 5 ospedali africani (http://www.who.int/gpsc/susp/en/). Uno studio costi-benefici (29) ha rilevato che benché il CHG sia più costoso, la sua efficacia nel ridurre le SSI lo rende fino al 36% più conveniente rispetto al PVP-I.

Limiti della ricerca

Riferimenti

4.8 Sigillanti chirurgici anti-microbici

Raccomandazioni

Il panel suggerisce che, al fine di ridurre le SSI, dopo la preparazione della pelle del sito chirurgico non devono essere utilizzati sigillanti antimicrobici.

(Raccomandazione condizionale, qualità delle prove molto bassa)

Razionale delle raccomandazioni

- Nel complesso, prove di qualità molto bassa provenienti da otto RCT e da uno studio quasi-randomizzato dimostrano che l’applicazione preoperatoria di sigillanti antimicrobici della pelle, in aggiunta alla preparazione standard della pelle del sito chirurgico, non produce né benefici né danni nel ridurre il tasso di SSI. Il GDG all’unanimità ha convenuto che non vi è alcun vantaggio nell’utilizzo di sigillanti antimicrobici e ha suggerito di non utilizzarli. Data la qualità delle prove, il GDG ha deciso che la forza di questa raccomandazione dovrebbe essere condizionale.

Osservazioni

- Il corpus di prove recuperate si focalizzava principalmente su pazienti adulti, ma uno studio includeva anche i bambini. Questa raccomandazione è valida per entrambe le popolazioni di pazienti.
- Il GDG ha osservato che la maggior parte degli studi che hanno valutato i sigillanti antimicrobici a base di cianoacrilato erano finanziati dai produttori di sigillanti commerciali.
- Tutti gli studi considerati avevano studiato l’uso di sigillanti antimicrobici sulla pelle del sito chirurgico prima dell’incisione.
- Anche se il tipo e la concentrazione degli antisettici utilizzati per la preparazione della pelle variavano tra gli studi considerati, il GDG ha evidenziato che i gruppi di intervento e di controllo in ciascuno degli studi era stato sottoposto alla stessa tecnica di preparazione della pelle, mentre i sigillanti antimicrobici erano stati aggiunti nel gruppo di intervento.
- Il GDG ha identificato l’irritazione cutanea e le reazioni allergiche come possibili danni associati con all’uso di sigillanti antimicrobici.

Background

Si ritiene che la flora batterica endogena presente sulla pelle del paziente sia la principale fonte di patogeni che contribuiscono all’insorgenza delle SSI. (1) La preparazione della cute del sito chirurgico solitamente comprende il funzionamento o l’applicazione di preparazioni a base alcolica contenenti agenti antisettici prima dell’incisione, quali soluzioni di CHG o iodio. Per ridurre il tasso di contaminazione del sito chirurgico e le conseguenti SSI, si stanno studiando e sviluppando nuove tecnologie.

I sigillati antimicrobici della pelle sono preparati sterili, che formano una pellicola a base di ciano acrilato e che vengono solitamente applicati come antisettico addizionale dopo la preparazione standard della pelle del sito chirurgico e prima della sua incisione. In sigillante deve rimanere in loco e bloccare la migrazione della flora dalla pelle circostante entro l’area chirurgica per poi dissolversi alcuni giorni dopo l’intervento. In quanto sostanza antimicrobica, i sigillanti hanno dimostrato di ridurre la conta batterica sulla pelle del sito operatorio (2). Tuttavia, la maggior parte degli studi hanno riportato soltanto variazioni nelle colonie batteriche ma non hanno studiato i tassi di SSI. Pertanto, l’utilizzo dei sigillanti antimicrobici allo scopo di prevenire le SSI è ancora dibattuto.

Le linee guida sulla prevenzione delle SSI attualmente disponibili non trattano dell’utilizzo di sigillanti e dei loro effetti per prevenire le infezioni. Il GDG ha deciso di condurre una riflessione sistematica per valutare l’efficacia del loro uso.
Sintesi delle evidenze

Scopo della revisione (Appendice Web 9) era di valutare se l’utilizzo di sigillanti antimicrobici in aggiunta alla preparazione standard della pelle del sito chirurgico fosse più efficace nella riduzione del rischio di SSI rispetto alla sola preparazione standard. La popolazione target erano tutti pazienti sottoposti a intervento chirurgico. Gli outcome principali erano la ricorrenza delle SSI la mortalità ad esse attribuibile.

Sono stati identificati in totale nove studi che comprendevano un totale di 1974 pazienti, per 8 RCT (3-10) e un trial prospettico quasi-randomizzato (11). Gli studi confrontavano gli effetti dell’aggiunta di sigillanti antimicrobici della pelle alla preparazione standard nei gruppi di intervento vs. la sola preparazione standard nel gruppo di controllo. Evidenze di qualità molto bassa non mostrano benefici o danni circa la riduzione dei tassi di SSI quando si utilizzano sigillanti antimicrobici in aggiunta alla sola preparazione standard della pelle del sito chirurgico (OR: 0.69; 95% CI: 0.38-1.25).

Il corpus delle evidenze recuperate si incentrava principalmente sui pazienti adulti, ma uno studio comprendeva anche bambini. La ricerca bibliografica non ha identificato studi che riportassero dati sulla mortalità attribuibile alle SSI.

Ulteriori fattori considerati nella formulazione delle raccomandazioni

Valori e preferenze

Non è stato recuperato uno studio sui valori e le preferenze dei pazienti per quanto riguarda questo intervento. Tuttavia, il GDG ha osservato che alcuni studi (8,12) riportavano che i pazienti potevano soffrire di irritazioni cutanee dovute ai sigillanti antimicrobici poiché questi permangono sulla pelle per un po’ di tempo. Pertanto, i pazienti potrebbero preferire non provare questa esperienza, soprattutto non essendoci evidenze di beneficio nell’utilizzo dei sigillanti per prevenire le infezioni del sito chirurgico.

Utilizzo delle risorse

Il GDG ha evidenziato che nei Paesi a basso e medio reddito la disponibilità di sigillanti antimicrobici potrebbe essere limitata e che il loro costo potrebbe potenzialmente rappresentare una preoccupazione per i budget. Lipp e colleghi hanno osservato che nessuno studio compreso in una meta-analisi riportava i costi dei sigillanti a base di cianoacrilato come preparazione preoperatoria del sito chirurgico e che non veniva dimostrato alcun beneficio nella prevenzione delle SSI (13). Oltre agli aspetti economici, la disponibilità di questi prodotti commerciali può essere un ulteriore barriera nei Paesi a basso e medio reddito. Inoltre, sarebbe necessario rendere disponibile a tutto lo staff chirurgico l’addestramento alla tecnica corretta e le risorse per il suo utilizzo.

Limiti della ricerca

I membri del GDG hanno evidenziato che molti degli studi disponibili sono a rischio di distorsione e potenziale conflitto di interessi. Diversi studi sono stati esclusi perché riportavano solamente dati riguardanti la colonizzazione batterica e non le SSI come outcome principale. Sono necessari ulteriori studi per identificare evidenze associate ad importanti outcome, compresi i tassi di SSI (piuttosto che dati microbici), la durata del ricovero, il rapporto costo-effficacia e gli effetti avversi sulla pelle.

La maggior parte degli studi selezionati riguardava l’utilizzo di sigillanti cianoacrilati in procedure contaminate; l’utilizzo di questi agenti può essere più o meno efficace in altre procedure. Altro aspetto importante è che il protocollo per la preparazione standard della cute del sito chirurgico con antisettici variava nei vari studi, rendendo così difficile cogliere il reale effetto del solo sigillante. Il GDG ritiene siano necessari studi meglio disegnati e di potenza adeguata. Questi dovrebbero focalizzarsi sulle SSI come outcome principale, invece che sulla riduzione della carica batterica. Anche la conduzione di trial con una popolazione di pazienti chirurgici più differenziata fornirà una guida basata sull’evidenza a supporto dell’utilizzo dei sigillanti antimicrobici. Per esempio, sono necessarie più evidenze nei pazienti chirurgici pediatrici.

Riferimenti

4.9 Preparazione chirurgica delle mani

Raccomandazione
Il panel raccomanda che la preparazione chirurgica delle mani venga effettuata o con lavaggio antisettico con sapone antibatterico e acqua o frizionandole con un adeguato prodotto a base alcolica prima di calzare i guanti sterili
(Raccomandazione forte, qualità delle prove moderata)

Razionale della raccomandazione

- Il GDG ha puntualizzato che la preparazione chirurgica è di vitale importanza per mantenere al minimo possibile la contaminazione del campo chirurgico, specialmente in caso di punta del guanto sterile durante le procedure. Nelle linee guida dell’OMS sull’igiene delle mani (1), pubblicate nel 2009, e in tutte le altre linee guida nazionali e internazionali sulla prevenzione delle SSI si raccomanda un'adeguata preparazione chirurgica delle mani.
- Per la prevenzione delle SSI, evidenze di qualità moderata mostrano l’equivalenza della frizione delle mani con soluzioni/gel a base alcolica e lo scrub con sapone antimicrobico e acqua nella preparazione chirurgica delle mani.

Osservazioni

- Le evidenze disponibili sulle SSI come outcome si limitano a tre RCT. I trial confrontavano la frizione (con preparazioni a base alcolica) con il lavaggio chirurgico (con PVP-I, CHG o semplice sapone) per la preparazione chirurgica delle mani e non hanno mostrato alcuna differenza significativa tra i due metodi.
- Evidenze da ulteriori studi, che considerano la carica batterica sulle mani dei partecipanti come outcome, hanno dimostrato che alcune formule a base alcolica sono più efficaci nel ridurre la formazione di colonie rispetto al lavaggio con acqua e sapone antimicrobico o semplice. La rilevanza di questi risultati rispetto al rischio di SSI rimane incerta. Il GDG ha considerato queste prove indirette e ha concluso che la raccomandazione non poteva essere sviluppata sulla base di questi risultati surrogati. Per lo sviluppo delle raccomandazioni sono state quindi considerate solo le evidenze provenienti da RCT con SSI come outcome.
- Le linee guida per l’igiene delle mani dell’OMS raccomandano l’utilizzo privilegiato di “un prodotto che garantisca un’efficacia prolungata”. Si suppone sia auspicabile l’efficacia prolungata garantita da alcuni prodotti (ad esempio, CHG), ma non c’era alcuna prova che questi prodotti fossero più efficaci nella riduzione diretta del rischio di SSI. In assenza di tali evidenze, il GDG ha deciso di non rilasciare alcuna raccomandazione su prodotti specifici, con o senza effetto prolungato, e ha sottolineato la necessità di definire ciò che si intende per prodotto "adeguato".
- Le mani dell’équipe chirurgica devono essere pulite nel momento in cui accede in sala operatoria, lavate con un sapone non medicato. Una volta nell’area operativa, la frizione o il lavaggio deve essere ripetuto prima di passare alla procedura successiva.
- Si tenga presente che l’attività degli ABHR può essere compromessa se le mani non sono completamente asciutte prima dell’applicazione del prodotto oppure a seguito di lavaggio. Pertanto, lo scrub chirurgico delle mani e la frizione con prodotti a base alcolica non devono essere sequenziali (1).
- Quando si sceglie l’ABHR, le strutture sanitarie devono procurare regolarmente prodotti di provata efficacia (ossia, che rispettino le norme europee o quelle della Società Americana per i test sui materiali o standard internazionali equivalenti) per implementare questa raccomandazione e posizionare erogatori automatici o con funzionamento a gomito nel locale di lavaggio chirurgico. In alternativa, devono essere disponibili per ogni operatore sanitario: sapone antimicrobico, acqua corrente pulita e asciugamani monouso o puliti.
- Nei LMIC, dove la disponibilità di ABHR è limitata, l’OMS incoraggia fortemente le strutture ad impegnarsi nella produzione locale di una formula a base alcolica secondo la guida dell’OMS, che è stato dimostrato essere una soluzione fattibile e a basso costo (1, 2).
A seguito di frequenti lavaggi per la preparazione chirurgica delle mani, possono verificarsi eventi avversi quali l’irritazione cutanea, la secchezza, la dermatite e alcune rare reazioni allergiche. Sebbene questi siano meno frequenti con gli ABHR e più frequenti con gli iodofori, anche gli ABHR ben tollerati e contenenti emollienti possono provocare una sensazione transitoria di torpore in qualsiasi punto in cui vi sia rottura della pelle (tagli, abrasioni). La dermatite allergica da contatto o la sindrome irticaria causata da ipersensibilità all’alcol o ad altri additivi presenti in alcuni ABHR sono casi rari. I preparati ABHR con fragranze forti possono essere mal tollerati da alcuni operatori sanitari con allergie respiratorie. Studi sulle preferenze dei chirurghi indicano una preferenza primaria per gli ABHR ad alta tollerabilità e accettabilità, dovuta principalmente al tempo di applicazione più breve richiesto a meno reazioni cutanee.

Quando si utilizzano preparati con CHG 1% o superiore occorre prestare attenzione per evitare il contatto con gli occhi, in quanto può causare congiuntivite o gravi danni corneali. L’ototossicità preclude il suo utilizzo nell’intervento chirurgico dell’orecchio interno o medio. Il contatto diretto con il tessuto cerebrale e le meningi deve essere evitato. La frequenza di irritazione della pelle è dipendente dalla concentrazione; i prodotti al 4% hanno più probabilità di causare dermatite quando utilizzati frequentemente per i lavaggi antisettici. Le reazioni allergiche vere al CHG sono molto rare (1).

Gli alcoli sono infiammabili e gli operatori sanitari che trattano preparazioni a base di alcol devono rispettare gli standard di sicurezza.

Background
Lo scopo dell’igiene di routine delle mani nella cura del paziente è di rimuovere lo sporco, il materiale organico e ridurre la contaminazione microbica da flora transitoria. Diversamente dal lavaggio sociale e dal lavaggio antisettico, la preparazione chirurgica delle mani deve eliminare la flora transitoria e ridurre la flora residente. Inoltre, deve inibire la proliferazione dei batteri sotto la mano guantata (1). Nonostante le limitate prove scientifiche sull’effetto della preparazione chirurgica delle mani (generalmente chiamata “handscrubbing”) sulla riduzione delle SSI, l’obbiettivo di questa misura preventiva è di ridurre il rilascio dei batteri della pelle dalle mani dell’équipe chirurgica alla ferita aperta per la durata dell’intervento, in particolare in caso di puntura non rilevata del guanto del chirurgo. Se le mani vengono lavate con un sapone non antimicrobico, sotto i guanti chirurgici si verifica una rapida proliferazione dei batteri cutanei, mentre il processo è rallentato dopo il lavaggio preoperatorio con sapone medicato. La flora della pelle, principalmente Stafilococchi, Propionibacterium spp. e Corynebacteria spp. coagulase negativi è raramente responsabile di SSI, ma, in presenza di un corpo estraneo o di tessuto necrotico, anche l’inoculazione di sole 100 unità colonizzanti può innescare tali infezioni (3).

Lo spettro di attività antimicrobica per la preparazione chirurgica delle mani deve essere il più ampio possibile contro batteri e funghi. I virus sono raramente coinvolti nelle SSI e non fanno parte delle sperimentazioni per la concessione di licenze in nessun Paese, così come i test sui batteri sporigeni. Secondo il Comitato Europeo per la Standardizzazione (4, 5) e la Società Americana per i Test sui Materiali (6), i preparati antisettici destinati ad essere utilizzati per la preparazione chirurgica delle mani sono valutati per la loro capacità di ridurre il numero di batteri liberati dalle mani in un’attività immediata e prolungata, colpendo così sia flora transitoria che quella residente. Pertanto, per essere considerata efficace, una preparazione antisettica deve rispettare la norma europea 12791 (7) o lo standard E-1115 della Società Americana per i Test sui Materiali (8).

Le linee guida dell’OMS sull’igiene delle mani nell’assistenza sanitaria (1) (Tabella 4.9.1) consigliano di mantenere le unghie corte e di rimuovere tutti i gioielli, le unghie artificiali o lo smalto prima della preparazione. Se le mani sono visibilmente sporche, consigliano di lavarle e di rimuovere la sporcizia dal letto ungueale utilizzando un detergente per unghie (non spazzolini), preferibilmente sotto l’acqua corrente (i lavandini devono essere progettati per ridurre il rischio di spruzzi). L’antisepsi chirurgica delle mani deve essere eseguita usando un sapone antimicrobico adatto o ABHR (ma non combinati), preferibilmente con un prodotto che garantisca...
un’efficacia prolungata, prima di calzare i guanti sterili. Le mani e gli avambracci devono essere frizzionati con il sapone per il tempo consigliato dal produttore, di solito 2-5 minuti. Le linee guida prevedono che, se la qualità dell’acqua non è garantita, per l’antisepsi chirurgica delle mani sia consigliabile usare ABHR. Una quantità sufficiente di ABHR va applicata a mani e avambracci asciutti per il tempo consigliato dal produttore, di solito 1,5 minuti e lasciata asciugare prima di calzare i guanti sterili. Diverse organizzazioni hanno pubblicato raccomandazioni per quanto riguarda la preparazione chirurgica delle mani e queste sono riassunte nella tabella 4.9.1.

Tabella 4.9.1 Sintesi delle raccomandazioni sulla preparazione chirurgica delle mani secondo le linee guida disponibili

<table>
<thead>
<tr>
<th>Linee Guida (Data pubblicazione)</th>
<th>Raccomandazioni sulla preparazione chirurgica delle mani</th>
</tr>
</thead>
</table>
| **Linee Guida OMS sull’igiene delle mani nell’assistenza sanitaria (2009) (1)** | - L’antisepsi chirurgica delle mani deve essere eseguita usando un sapone antimicrobico adatto o con ABHR, preferibilmente con un prodotto che assicuri un’attività prolungata, prima di calzare i guanti sterili.
- Se la qualità dell’acqua non è garantita, per l’antisepsi chirurgica delle mani prima di un intervento chirurgico è consigliabile usare un ABHR prima di calzare i guanti sterili.
- Durante l’esecuzione dell’antisepsi chirurgica con sapone antimicrobico, lavare le mani e gli avambracci per la durata di tempo raccomandata dal produttore, in genere 2-5 minuti. Non sono necessari tempi di lavaggio lunghi (ad esempio, 10 minuti).
- Quando si utilizza un prodotto a base alcolica con attività prolungata, seguire le istruzioni del produttore per i tempi di applicazione. Applicare il prodotto solo a mani asciutte. Non combinare il lavaggio chirurgico e la frizione con prodotti a base alcolica in sequenza.
- Quando si usa un ABHR, applicarne una quantità sufficiente a mantenere le mani e gli avambracci bagnati durante la procedura di preparazione chirurgica delle mani.
- Dopo l’applicazione dell’ABHR come raccomandato, lasciare asciugare le mani e gli avambracci prima di calzare i guanti sterili. |
| **SHEA/IDSA (2014) (9)** | - Per eseguire lo scrub chirurgico preoperatorio, utilizzare un agente antisettico appropriato strofinando le mani e gli avambracci per 2-5 minuti per la maggior parte dei prodotti. |
| **NICE (2008 e 2013) (10,11)** | - L’équipe chirurgica deve lavarsi le mani prima della prima operazione in programma, utilizzando una soluzione antisettica idroalcoolica, e assicurarsi che mani e unghie siano visibilmente pulite, utilizzando uno spazzolino o un bastoncino per unghie monouso.
- Prima delle operazioni successive, lavare le mani utilizzando una soluzione di frizione a base alcolica o una soluzione chirurgica antisettica.
- Se le mani sono sporche, devono essere rilavate con una soluzione chirurgica antisettica.
- La versione rivista di queste linee guida, pubblicata nel 2013, riprende la stessa procedura per la preparazione chirurgica delle mani, raccomandando in aggiunta la rimozione di tutti i gioielli, unghie artificiali e smalto prima di iniziare l’intervento di decontaminazione. |

Sintesi delle evidenze

Scopo della revisione delle evidenze (Appendice web 10) era confrontare gli effetti di diverse tecniche (frizione, lavaggio chirurgico), prodotti (diverse formule di soluzioni alcoliche, sapone semplice o medicato) e tempi di applicazione per lo stesso prodotto. L’outcome primario era l’insorgenza di SSI e mortalità correlata. La popolazione target comprendeva pazienti di tutte le età sottoposti a intervento chirurgico.

Sono stati identificati soltanto sei studi, di cui tre RCT (14-16) e tre osservazionali (17-19) che avevano le SSI come outcome primario. Tutti gli studi confrontavano il lavaggio chirurgico con la frizione per la preparazione chirurgica delle mani. Il frizzamento era eseguito utilizzando Sterilium® (Bode Chemie GmbH, Amburgo-Stellingen, Germania), soluzione idroalcoolica al 75% contenente propanolo-1, propanolo-2 e meccetronio), la formula 2 raccomandata dall’ OMS (Alcool isopropilico 75% volume/volume , glicerolo 1,45% (v/v), perossido d’ idrogeno 0,125% (v/v); Avagard® (3M, Maplewood, MN, USA; etanolo 61% più soluzione CHG 1% oppure Purell® (Gojo Industries Inc., Akron, OH, USA; alcool etilico 62% come principio attivo; acqua, aminometil propanolo, miristato d’isopropile, glicole propilenico, glicerina, tocoferolo acetato, carbomer e profumo come ingredienti non attivi). I prodotti per il lavaggio delle mani contenevano CHG o PVP-I e/o sapone semplice. Cinque studi confrontavano l’ABHR rispetto al lavaggio con un sapone antimicrobico contenente PVP-I 4% o CHG 4% e non hanno evidenziato differenze significative di SSI. Lo stesso risultato è stato trovato in un studio clinico randomizzato controllato a cluster crossover che confrontava l’ABHR rispetto al lavaggio delle mani con sapone semplice (15). Non è stato possibile effettuare alcuna meta-analisi di questi dati in quanto i prodotti utilizzati per il lavaggio o per la frizione delle mani erano diversi.

La revisione sistematica ha inoltre identificato 58 studi, condotti sia in laboratorio che in ambito ospedaliero, che valutavano la colonizzazione microbica delle mani dei partecipanti dopo la preparazione chirurgica con differenti prodotti e tecniche. Gli studi presentavano ampie differenze per quanto riguardava l’ambito, i metodi microbiologici utilizzati, il tipo di prodotto e il momento del campionamento. Il GDG ha deciso di non tenere conto di queste evidenze indirette per formulare la raccomandazione di considerare esclusivamente degli studi che avevano le SSI come outcome. Questa raccomandazione è valutata moderata a causa delle incoerenze. Le evidenze nell’insieme non mostrano differenze tra la frizione e il lavaggio delle mani per ridurre le SSI. La revisione sistematica non ha reperito studi che confrontassero tecniche di durata diversa per l’applicazione dello stesso prodotto, con le SSI come outcome. Sono stati reperiti soltanto studi che valutavano la carica batterica sulle mani. Dopo aver valutato queste evidenze indirette, il GDG ha deciso di non sviluppare alcuna raccomandazione sulla durata della preparazione chirurgica delle mani e di continuare a raccomandare di seguire le istruzioni del produttore di ciascun prodotto.

Ulteriori fattori considerati nella formulazione delle raccomandazioni

Valori e preferenze

Non è stato reperito alcun studio sui valori e le preferenze dei pazienti riguardo questo intervento. Poiché la preparazione chirurgica delle mani è da circa 200 anni considerata la miglior pratica clinica ed è raccomandata da tutte le linee guida chirurgiche, il GDG è certo che i valori e le preferenze tipici della popolazione target riguardanti l’outcome sarebbero favorevoli all’intervento.
Studi sulle preferenze dei chirurghi indicano una preferenza per la frizione. In generale, gli studi dimostrano che l’ABHR è più accettata dai chirurghi rispetto al lavaggio, soprattutto perché più rapida e fonte di meno reazioni cutanee. Gli studi inclusi fornivano alcuni dati sull’accettabilità e la tollerabilità dei prodotti. Secondo un’indagine sui consumatori inserita in uno studio condotto in Kenya (15), l’équipe chirurgica mostrava di preferire l’ABHR in quanto è più veloce da eseguire, non è vincolata alla disponibilità e alla qualità dell’acqua e non richiede di asciugare le mani con dei teli.

Non erano riportate reazioni cutanee né con la frizione né con il lavaggio con acqua e sapone semplice. Parienti e colleghi (14) hanno verificato la tolleranza cutanea di 77 persone appartenenti a staff chirurgici ed hanno rilevato che la secchezza della pelle e l’irritazione andavano significativamente meglio nel periodo dello studio in cui si applicava la frizione. Anche se Al-Naami e colleghi (16) non sono riusciti a dimostrare una differenza significativa, un’indagine condotta in Canada su un intervento di preparazione chirurgica delle mani (18) ha dimostrato che il 97% dei rispondenti erano d’accordo di passare alla frizione e 4 persone avevano persino notato un miglioramento delle condizioni della loro pelle. Tutti gli studi riportavano meno episodi (uno nessuno) di dermatiti sostanziali con l’ABHR rispetto al lavaggio. In uno studio alcuni chirurghi segnalavano la decolorazione reversibile dei peli dell’avambraccio dopo ripetute frizioni.

Utilizzo delle risorse

Gli studi osservazionali aventi le SSI come outcome dimostrano una significativa convenienza della frizione delle mani. Uno studio canadese (18) ha mostrato che i costi standard per la fornitura diretta erano valutati intorno ai Can$ 6.000 all’anno per 2.000 procedure chirurgiche, esclusi i costi di pulizia e sterilizzazione degli asciugamani. Il totale delle spese effettivamente sostenute per un intero anno di frizioni è stato di Can$ 2.531, pari ad un risparmio di circa 3.500. La drastica riduzione dell’utilizzo degli asciugamani chirurgici (in media 300 in meno la settimana) si aggiunge al risparmio. Due altri studi provenienti da USA e Costa d’Avorio hanno dimostrato costi minori con Avagard® e Sterilium® rispetto all’utilizzo di spazzole per le mani impregnate di antisettico e prodotti PVP-I, rispettivamente. Un RCT ha supportato questi risultati dimostrando che il costo settimanale approssimativo di una produzione locale di ABHR secondo la forma modificata dell’OMS era appena superiore a quello del semplice sapone (€ 4,60 contro € 3,30; rapporto 1:1,4). Nonostante l’evidente convenienza della frizione alcolica delle mani, nei LMIC possono comunque sussistere problemi di costi e disponibilità, anche se viene promossa la produzione locale. Gli ostacoli alla produzione locale possono comprendere difficoltà ad identificare personale con capacità adeguate, necessità di addestrarlo, limiti legati al procacciamento di ingredienti e distributori e mancanza di un adeguato controllo della qualità. Tuttavia, il GDG ha fortemente sottolineato che la produzione locale rimane ancora un’opzione promettente in queste realtà. Un’indagine OMS (20) in 39 strutture di 29 Paesi ha dimostrato che i dosatori top-up, che sono i più facilmente reperibili, implichino un rischio di contaminazione batterica, specialmente nei LMIC. Secondo l’indagine, il riutilizzo dei dosatori in diversi siti è servito a superare il problema delle difficoltà causate dalle carenze locali e dai costi relativamente elevati di nuovi dispenser. Tuttavia questo riutilizzo può portare ad una contaminazione del contenuto, soprattutto quando gli erogatori vuoti vengono ricondizionati con un semplice lavaggio prima di essere nuovamente riempiti e la strategia “vuota, pulisci, asciuga, poi riempi” per evitare il rischio può richiedere risorse extra.

La fattibilità e i costi relativi ai controlli standard di qualità sui prodotti locali è un’altra questione. Nell’indagine OMS, 11 dei 24 siti verificati non erano in grado di attuare controlli di qualità locali per mancanza di strumenti e per i costi. Tuttavia, la maggior parte di questi erano in grado di attuare almeno i controlli basilari con alcolometri acquistati sul posto. L’uso di acqua e sapone richiede asciugamani monouso, che aggiungono costi. Il riutilizzo degli asciugamani non è raccomandato e gli asciugamani devono essere cambiati tra il personale, tutto ciò con implicazioni a livello di risorse.

Limiti della ricerca

Il GDG ha fatto notare che esistono grandi limiti nella ricerca ed eterogeneità in letteratura per quanto riguarda il confronto dell’efficacia di prodotti, delle tecniche e della durata dei metodi di lavaggio aventi le SSI come outcome. In particolare, sarebbe utile condurre studi in ambiti clinici per confrontare...
l'efficacia dei vari prodotti antisettici con attività dichiarata di prevenzione delle SSI rispetto alla frizione o al sapone antimicrobico senza effetti dichiarati. Sarebbero anche utili studi ben disegnati sul costo-efficacia e sulla tollerabilità/accettabilità delle formule prodotte a livello locale nei LMIC. Inoltre, è necessaria ricerca per verificare l'interazione tra i prodotti utilizzati per la preparazione chirurgica delle mani e diversi tipi di guanti, in relazione all'outcome SSI.

Riferimenti

Tecnica del lavaggio chirurgico delle mani

- Lavare le mani con acqua e sapone quando si arriva in sala operatoria o dopo essersi vestiti (cuffia/cappello e maschera)
- Per la preparazione chirurgica delle mani utilizzare un prodotto a base alcolica (ABHR), seguendo con cura la tecnica illustrata nelle immagini da 1 a 17, prima di ogni intervento.
- Se alla rimozione dei guanti rimangono sulle mani residui di talco o di materiale biologico, lavare con acqua e sapone

Figure 3-7: Spalmare il prodotto sull’avambraccio destro fino al gomito. Assicurarsi che tutta l’area sia coperta da movimenti circolari intorno all’avambraccio fino a quando il prodotto non è completamente evaporato (10-15 secondi)

Figure 8-10: Ripetere i passaggi 1-7 sulla mano e sull’avambraccio sinistri

Figure 11-17: Coprire la superficie di entrambe le mani fino al polso con l’ABHR, strofinandole palmo contro palmo con movimento rotatorio

Ripetere la sequenza (in media 60 secondi) per il numero di volte necessarie a raggiungere la durata totale prescritta dalla casa produttrice dell’ABHR. Potrebbero essere due o anche tre volte
L’Organizzazione Mondiale della Sanità ha adottato tutte le precauzioni necessarie per verificare le informazioni contenute nel presente documento. Tuttavia, il materiale pubblicato viene distribuito senza garanzia di alcun tipo, espresa o implicita. La responsabilità dell’interpretazione e dell’uso del materiale spetta al lettore. In nessun caso l’OMS è responsabile dei danni derivanti dal suo utilizzo.

MISURE PRE E/O INTRAOPERATORIE

4.10 Supporto nutrizionale potenziato

Raccomandazione

Il panel suggerisce di prendere in considerazione la somministrazione orale o enterale di integratori multinutrienti allo scopo di prevenire le SSI in pazienti sottopeso che si sottopongono ad interventi di chirurgia maggiore.

(Raccomandazione condizionale, qualità delle prove molto bassa)

Razionale della raccomandazione

- Gli integratori multinutrienti avanzati contengono combinazioni di arginina, glutammina, acidi grassi omega-3 e nucleotidi.
- Dopo un’attenta valutazione degli studi inclusi, il team di ricerca e il GDG hanno deciso di effettuare metanalisi di confronto che comprendessero solo gli studi in cui per la somministrazione erano state utilizzate la via orale e enterale, escludendo quelli in cui è stata utilizzata la via parenterale. Il motivo principale era che la via parenterale è molto diversa e gli esperti hanno ritenuto inappropriato somministrare miscele nutrizionali avanzate solo al fine di prevenire SSI quando si considera il rischio infettivo connesso all’accesso endovenoso.
- Nel complesso, prove di qualità molto bassa fornite da otto RCT e due studi osservazionali dimostrano che le formule multinutrienti apportano un vantaggio nel ridurre il rischio di SSI rispetto al supporto nutrizionale standard. La popolazione studiata era costituita da pazienti adulti sottoposti a interventi chirurgici maggiori (principalmente pazienti oncologici e cardiaci). Prove di bassa qualità provenienti da cinque RCT e da uno studio di osservazionale mostrano che una formula mononutriente (contenente arginina, glicina o acidi grassi omega-3) non produce né benefici né danni rispetto al supporto nutrizionale standard nel ridurre il rischio di SSI. A seguito di tali valutazioni e confronti, il GDG ha convenuto di suggerire che i pazienti sottopeso che devono subire interventi di chirurgia maggiore (in particolare oncologica e cardiovascolare) possono trarre beneficio dalla somministrazione di miscele multinutrienti potenziate per via orale o enterale per prevenire l’insorgenza di SSI. Data la qualità molto bassa delle evidenze, la forza di questa raccomandazione è stata considerata condizionale e il GDG ha proposto di utilizzare la dicitura "Il panel suggerisce di considerare..." per evidenziare la necessità di un’attenta analisi locale e di una valutazione paziente per paziente dell’opportunità e delle modalità di applicazione di questa raccomandazione, in particolare rispetto alla disponibilità di miscele nutrizionali e dei costi. Nota: "sottopeso" è un termine che descrive una persona il cui peso corporeo è considerato troppo basso per essere in salute. La definizione si riferisce solitamente a persone con un indice di massa corporea inferiore a 18,5 o un peso del 15-20% al di sotto della norma per fascia di età e altezza.

Osservazioni

- Il corpus di evidenze recuperate riguardava pazienti adulti e non era disponibile alcun studio in ambito pediatrico. Pertanto, l’efficacia dell’intervento non è dimostrata per i pazienti pediatrici ed è valido solo per pazienti adulti.
- Non vi sono evidenze sufficienti per stabilire se il timing della somministrazione di multinutrienti potenziati modifichi l’effetto sulla prevenzione delle SSI. Pertanto, il GDG non è stato in grado di individuare i momenti e la durata ottimali per la somministrazione di queste formule.
Il GDG ha sottolineato che la maggior parte dei pazienti inclusi negli studi erano alimentati per via enterale per motivi diversi dalla prevenzione delle SSI. Quando si inserisce un sondino per alimentazione esclusivamente per somministrare miscele multinutrienti per la prevenzione delle SSI, è importante essere consapevoli del possibile disagio e dei danni che vanno dall’irritazione delle mucose e sviluppo di sinusite alla perforazione. Il GDG non incoraggia l’inserimento di sondini per alimentazione al solo scopo di prevenire le SSI. In particolare, ritiene che il miglioramento dello status nutrizionale non dovrebbe in alcun modo portare a posticipare l’intervento chirurgico.

Il GDG ha identificato nei preparati contaminati un potenziale danno, soprattutto a causa di acqua contaminata e/o una falla nella tecnica asettica durante la preparazione. Questo rischio aumenta quando l’alimentazione avviene a casa del paziente. È buona pratica seguire le linee guida cliniche di prevenzione e controllo delle ICA e le precauzioni asettiche nella preparazione delle formule nutrizionali.

Background

La malnutrizione, comprese le carenze proteiniche e di etti micronutrienti, continua ad essere uno dei principali problemi di sanità pubblica, in particolare per quanto riguarda i Paesi in via di sviluppo. Colpisce anche la popolazione anziana in rapida crescita dei Paesi ad alto reddito (1,2). Lo stato nutrizionale può avere un impatto profondo sul sistema immunitario (3), come documentato da alcuni studi (2-4). Queste alterazioni possono rendere i pazienti più sensibili alle infezioni postoperatorie e la malnutrizione è stata segnalata come una minaccia per l’esito chirurgico, per recupero ritardato, tassi più elevati di mortalità e mortalità, degenza ospedaliera prolungata, aumento dei costi sanitari e tassi più elevati di riammissione anticipata (2-7).

Alcuni studi hanno dimostrato che il supporto nutrizionale precoce può migliorare l’esito di un intervento di chirurgia maggiore e diminuire l’incidenza di complicanze infettive in pazienti selezionati per malnutrizione o ferite gravi. L’ipotesi è che il sistema immunitario possa essere modulato mediante l’uso di specifici tipi di supporto nutrizionale (2,3,6,8).

Anche la chirurgia induce un’alterazione del metabolismo delle proteine, caratterizzata da un bilancio negativo di azoto e cambiamenti nei modelli di aminoacidi nel sangue. In aggiunta, l’inflammazione è parte integrante del recupero dopo uno stress quale l’intervento chirurgico. Pertanto, il supporto nutrizionale è sempre più utilizzato come mezzo per aumentare l’assunzione di proteine e calorie nel perioperatorio, in particolare utilizzando formule ad alto contenuto di aminoacidi specifici, antiossidanti e nutrienti antinfiammatori (9,10).

Dato il ruolo della nutrizione nella risposta dell’ospite all’intervento chirurgico, molti ricercatori ritengono che il supporto nutrizionale ridurrebbe le SSI e la relativa morbilità. Tuttavia, è stato difficile dimostrare coerentemente un’associazione epidemiologica tra SSI incisionale e malnutrizione per tutte le sottospecialità chirurgiche. C’è molto poco consenso sul timing e i dosaggi ottimali di multinutrienti, in particolare per la prevenzione delle SSI.

Attualmente non esistono raccomandazioni formali sull’integrazione nutrizionale per la prevenzione delle SSI. Recentemente raccomandazioni SHEA/IDSA affermano che la somministrazione preoperatoria di nutrizione parenterale non deve ritardare l’intervento chirurgico (11). A seguito di un’analisi approfondita delle risorse e delle limitate raccomandazioni di altre linee guida, i membri del GDG hanno deciso di condurre una revisione sistematica sull’efficacia dell’integrazione nutrizionale per la prevenzione delle SSI.

Sintesi delle evidenze

Scopo della revisione delle evidenze (Appendice web 11) era di valutare l’effetto del supporto nutrizionale avanzato rispetto alla nutrizione standard per la prevenzione delle SSI. La popolazione target erano pazienti di tutte le età sottoposti ad intervento chirurgico. L’outcome principale era l’insorgenza di SSI e mortalità correlata. Sono stati identificati un totale di 23 studi, di cui 19 RCT (12-30) e quattro studi osservazionali (31-34) che riportavano come outcome le SSI. Questi studi riguardavano pazienti adulti sottoposti a procedure di cardiochirurgia (uno studio) e chirurgia elettiva della testa e del collo, gastrointestinale, colorettale o cancro ginecologico. Non era disponibile alcuno...
studio sulla popolazione pediatrica. Erano presenti sostanziali differenze nella via di somministrazione, nelle formule nutrizionali e nella definizione di SSI. Dopo l’attenzione valutazione degli studi inclusi, il team di ricerca e il GDG hanno deciso di eseguire confronti di metaanalisi, comprendendo solo gli studi in cui erano state utilizzate la via orale e enterale ed escludendo quelli che avevano utilizzato la via parenterale.

Nonostante l’eterogeneità sopra menzionata, sono state effettuate due meta-analisi per valutare i seguenti confronti: formula multinutriente avanzata vs. alimentazione standard e formula mononutriente avanzata vs. nutrizione standard, somministrata per via orale o enterale.

Sono stati individuati in totale 10 studi, dei quali otto RCT (15,19-21,23,26,28,29) e due studi osservazionali (31,33), per un totale di 1.434 pazienti, che confrontavano l’uso di formule multinutriente avanzate (contenenti una qualsiasi combinazione di arginina, glutamina, acidi grassi omega-3 e nucleotidi) alla nutrizione standard. Uno studio (19) aveva elaborato dati provenienti da diversi centri. Evidenze di qualità molto bassa dimostrano che una formula nutrizionale multinutriente apporta un beneficio significativo rispetto a una standard per ridurre il rischio di SSI. Le OR combinate erano dello 0,53 (95% CI: 0,30-0,91) per gli RCT e 0,07 (95% CI: 0,01-0,53) per gli studi osservazionali.

Inoltre, sei studi, per un totale di 397 pazienti e comprendenti cinque RCT (14,16-18,29) e uno studio osservazionale (32) confrontavano l’uso di integratori nutrizionali arricchiti con un singolo nutriente (archinina, glicina o catena ramificata di aminoacidi) alla nutrizione standard. Questi studi riguardavano pazienti adulti sottoposti a chirurgia elettiva per cancro alla testa e al collo, carcinoma epatocellulare e malattie cardiache. Evidenze di bassa qualità dimostrano che la formula arricchita da un singolo nutriente non apporta né beneficio né danno per la riduzione delle SSI rispetto alla nutrizione standard (RCT: OR: 0,61;95% CI: 0,13-2,79; studio osservazionale: OR: 0,29;95% CI: Cl:0,06-1,39).

La ricerca bibliografica non ha permesso di identificare studi che riportassero dati sulla mortalità imputabile alle SSI.

Ulteriori fattori considerati nella formulazione delle raccomandazioni

Valori e preferenze

Non è stato trovato alcuno studio sui valori e le preferenze del paziente rispetto a questo intervento. È stato riconosciuto che, sebbene i pazienti possano apprezzare le misure per prevenire le SSI, non desiderano essere esposti al disagio o a possibili danni dovuti ad un sondino per l’alimentazione inserito esclusivamente a tale scopo. Il GDG è convinto che i pazienti sarebbero molto più propensi ad accettare la somministrazione di formule nutrizionali avanzate se fossero già in fase di alimentazione enterale. Inoltre, quando è possibile l’alimentazione orale, questa è probabilmente l’alternativa accolta più favorevolmente dalla maggior parte dei pazienti. Alcune delle miscele erano a base di latte, il che può rappresentare un problema per gli individui che evitano i latticini per motivi dietetici, etici o culturali.

Utilizzo delle risorse

Non sono stati individuati studi sul rapporto costo-efficacia. Tuttavia, il supporto nutrizionale avanzato è costoso e richiede lavoro supplementare al personale clinico. Nelle strutture dove queste formule sono utilizzate, vi è una particolare necessità di dietisti e farmacisti, anche per la formazione del personale sull’impiego e sui preparati appropriati. È essenziale che tutti i pasti per via orale siano preparati in un’area pulita dedicata, utilizzando una tecnica asettica. Inoltre, la disponibilità di formule avanzate può essere limitata, in particolare nei LMIC, anche per quanto riguarda i singoli ingredienti per prepararle (ad esempio, acqua potabile pulita). Devono essere implementate misure IPC per la preparazione delle formule. Data la qualità molto bassa delle evidenze a favore, il GDG non era certo se i vantaggi controbilanciassero i costi delle formule multinutrienti avanzate.

Limiti della ricerca

Il GDG ha evidenziato che i pochi studi che analizzano l’efficacia di un maggiore supporto nutrizionale per la prevenzione delle SSI sono limitati e generalmente di qualità moderata. Inoltre, sono spesso condotti in popolazioni ad alto rischio di malnutrizione (ad esempio, tumore gastrointestinale), cosa che limita la loro generalizzabilità. Molti studi sono stati finanziati dai produttori di formule e questo potrebbe aumentare la potenziale distorsione. I futuri RCT ben progettati devono essere indipendenti dai produttori e realizzati su

Linee Guida Globali per la prevenzione delle infezioni del sito chirurgico
popolazioni di grandi dimensioni di individui che subiscono varie procedure chirurgiche generali. L'impatto del supporto nutrizionale deve essere ulteriormente studiato nei LMIC. Gli studi devono esaminare i vantaggi di altri nutrienti (ad esempio ferro, zinco) e delle vitamine. Infine, il timing e la durata ottimali della somministrazione del supporto nutrizionale in relazione al momento dell'intervento chirurgico devono essere ulteriormente valutati da RCT ben progettati.

Riferimenti

4.11 Interruzione perioperatoria degli agenti immunosoppressori

Raccomandazione

Il panel suggerisce di non interrompere la terapia immunosoppressiva prima di un intervento allo scopo di prevenire le SSI

Raccomandazione condizionale, qualità delle prove molto bassa

Razionale della raccomandazione

- Evidenze di qualità molto bassa mostrano che la sospensione perioperatoria del metotrexato (MTX) potrebbe essere dannosa o non avere alcun effetto sul rischio di SSI rispetto al suo mantenimento. Altre evidenze di qualità molto bassa provenienti da due studi osservazionali hanno dimostrato che la sospensione perioperatoria degli inibitori del fattore di necrosi tumorale (TNF) potrebbe apportare beneficio per la riduzione delle SSI rispetto alla sua prosecuzione. Tenuto conto (1) della limitatezza delle evidenze (a favore dell'anti-TNF) o della mancanza di evidenze e persino del potenziale danno (per il MTX) per sostenere la sospensione del trattamento, e (2) il rischio associato alla sospensione del trattamento sulla/e malattia/e di base del paziente, il GDG ha unanimemente accettato di suggerire che i farmaci immunosoppressivi non devono essere interrotti per prevenire le SSI.

Osservazioni

- Il GDG ha sottolineato che la decisione di interrompere il farmaco immunosoppressivo può essere presa su base individuale, coinvolgendo il medico curante, il paziente e il chirurgo.
- Non ci sono evidenze di rilievo sull'interruzione perioperatoria della terapia corticosteroidea a lungo termine.
- La popolazione considerata dagli studi sull' MTX comprendeva pazienti affetti da artrite reumatoide (1-5) e morbo di Crohn (6). Gli studi sugli anti-TNF comprendevano una popolazione con artrite reumatoide (7) e altre malattie reumatiche infiammatorie (8).
- Il momento e l'intervallo di sospensione dell'agente immunosoppressore erano molto eterogenei tra gli studi o non specificati affatto.
- Il GDG ha identificato come danno potenziale associato alla sospensione della terapia immunosoppressiva la recrudescenza della malattia di base. Il rischio di eventi avversi rilevanti connessi con la sospensione è elevato nei pazienti che assumono terapia immunosoppressiva dopo il trapianto di organi o per l'artrite reumatoide, mentre potrebbe essere minore per quelli che li assumono per curare una malattia infiammatoria intestinale (4,5,9-14).

Background

Gli agenti immunosoppressori sono farmaci che inibiscono o impediscono l'attivazione del sistema immunitario. Essi sono comunemente prescritti per prevenire il rigetto di organi trapiantati o per il trattamento di malattie infiammatorie, come l'artrite reumatoide o le malattie infiammatorie intestinali. Alcuni studi osservazionali indicano che, nei pazienti trattati con questi agenti, l'effetto immunosoppressivo potrebbe portare a una compromissione della guarigione delle ferite con aumento del rischio di infezione (8). Viceversa, la sospensione del trattamento immunosoppressivo potrebbe indurre il riacutizzarsi dell'attività patologica e le interruzioni a lungo termine della terapia possono indurre la formazione di anticorpi anti-farmaco e successivamente diminuire l'effetto degli immunosoppressori (15). Ad oggi, solo una linea guida per la prevenzione SSI ha emesso una raccomandazione relativa alla somministrazione di agenti immunosoppressivi nel periodo perioperatorio. Queste linee guida sono state pubblicate da SHEA/IDSA e raccomandano di evitare l'uso di agenti immunosoppressori nel perioperatorio, se possibile (16). Tuttavia, questa...
raccomandazione non si basa su una revisione sistematica della letteratura, su meta-analisi o su una rigorosa valutazione della qualità delle evidenze.

A seguito di un’analisi approfondita delle risorse e della potenza delle evidenze delle attuali linee guida, il GDG ha deciso di condurre una revisione sistematica valutare l’influenza degli immunosoppressori sull’incidenza delle SSI e se la loro interruzione nel perioperatorio sia efficace per la prevenzione delle SSI.

Sintesi delle evidenze

Scopo della revisione delle evidenze (Appendice web 12) era di valutare se la sospensione della terapia immunosoppressiva nel periodo perioperatorio è più efficace nel ridurre il rischio di SSI che la sua continuazione. La popolazione target erano pazienti di tutte le età in terapia immunosoppressiva e sottoposti ad intervento chirurgico. L’outcome principale era l’insorgenza di SSI e mortalità correlata.

Sono stati identificati un totale di otto studi che confrontavano la sospensione della somministrazione di farmaci immunosoppressivi vs. la continuazione nel perioperatorio, per complessivi 2.461 pazienti. Essi comprendevano un RCT (5), un quasi-RCT (3) e sei studi osservazionali (1,2,4,6-8). Sei studi, compreso un RCT (5), un quasi-RCT (3) e quattro osservazionali (1,2,4,6) avevano come oggetto di studio il MTX e due studi osservazionali (7,8) l’anti-TNF. Il momento e l’intervallo di sospensione della terapia sono stati i seguenti: sette giorni prima dell’intervento chirurgico (5); una settimana prima dell’intervento chirurgico e la settimana dell’intervento (2); due settimane prima e due dopo l’intervento (3); entro quattro settimane prima dell’intervento chirurgico (6); quattro settimane prima dell’intervento (1); e una, quattro o otto settimane prima e reintrodotta una settimana dopo l’intervento chirurgico (8). I restanti due studi fornivano una descrizione piuttosto generica del momento e dell’intervallo temporale di interruzione, cioè più di quattro volte l’emivita del farmaco (7) o più di una settimana durante il periodo perioperatorio (4).

Secondo gli studi selezionati, sono stati valutati i seguenti confronti:

Proseguimento vs. interruzione di:

- Metotrexato (MTX)
- Anti-TNFα (Fattore di necrosi tumorale)

disponibili. Da segnalare, inoltre, che diverse altre linee guida per la prevenzione delle SSI non affrontano questo argomento.

Evidenze di qualità molto bassa mostravano che l’interruzione della terapia MXT può essere dannosa o non avere alcun effetto sul rischio di SSI rispetto alla sua prosecuzione. L’OR combinato era 7,75 (95% CI: 1,66-36,24) per gli studi controllati e 0,37 (95% CI: 0,07-1,89) per quelli osservazionali. Inoltre, vi sono evidenze di qualità molto bassa, derivanti da due studi osservazionali (7,8), che la discontinuità perioperatoria di anti-TNF potrebbe avere un vantaggio nel ridurre i tassi di SSI rispetto al suo mantenimento (OR: 0,59; 95% CI: 0,37-0,95).

Il corpus di evidenze recuperate riguardava principalmente pazienti adulti, anche se alcuni studi comprendevano una popolazione pediatrica (6,8). La ricerca bibliografica non ha identificato studi che riportassero dati sulla mortalità imputabile alle SSI.

Ulteriori fattori considerati nella formulazione delle raccomandazioni

Valori e preferenze

Non è stato trovato alcuno studio sui valori e le preferenze del pazienti rispetto a questo intervento. Il GDG è convinto che la maggior parte dei pazienti apprezzì la prevenzione delle SSI, ma che non voglia essere esposta al rischio del riacutizzarsi o del progredire della la malattia sottostante a causa dell’interruzione della terapia immunosoppressiva. Inoltre, la maggior parte dei pazienti vorrebbe essere pienamente informata in merito alle conseguenze di tali decisioni ed essere coinvolta nel processo decisionale.

Utilizzo delle risorse

Non sono disponibili dati sul rapporto costo/efficacia della prosecuzione o sospensione di terapia immunosoppressiva. Il GDG ha sottolineato che, quando si prende una decisione in merito alla sua interruzione, dovrà essere coinvolto il medico curante o un altro medico di grado superiore, atto che può generare costi aggiuntivi.

Limiti della ricerca

I membri del GDG hanno evidenziato che sono urgentemente necessari studi clinici ben progettati per chiarire la questione. Questi studi devono...
esaminare anche il lasso di tempo ottimale tra l’interruzione della terapia immunosoppressiva e il momento dell’intervento chirurgico. Inoltre, devono studiare l’importanza di un dosaggio ottimale dei vari agenti immunosoppressivi per quanto riguarda i tassi di SSI, tenendo conto dei nuovi principi immunosoppressori. Il GDG ha sottolineato che anche i dati della sorveglianza e delle cartelle cliniche possono molto probabilmente contribuire a fornire evidenze in questo campo di ricerca.

Riferimenti

4.12 Ossigenazione perioperatoria

Raccomandazione

Il panel raccomanda che, per ridurre il rischio di SSI, i pazienti adulti sottoposti ad anestesia generale con intubazione endotracheale per procedure chirurgiche ricevano una frazione di ossigeno inspirato (FiO₂) all’80% nell’intraoperatorio e, se possibile, nell’immediato postoperatorio di 2-6 ore (Raccomandazione fore qualità delle prove molto moderata)

Razionale della raccomandazione

- Evidenze di qualità moderata mostrano che somministrare FiO₂ ad elevata saturazione (80%) è vantaggioso per i pazienti sottoposti a procedure di anestesia generale con intubazione endotracheale e che porta ad una significativa riduzione del rischio di SSI rispetto alla saturazione del 30-35%. Di conseguenza, il GDG all’unanimità ha concordato di raccomandare che i pazienti sottoposti a procedure chirurgiche in anestesia generale ricevano FiO₂ all’80% durante l’intervento e, se possibile, nelle 2-6 ore immediatamente successive e che la forza della presente raccomandazione sia forte.
- La FiO₂ è stata scelta come unità di misura perché utilizzata negli studi recuperati che hanno portato alla stesura della raccomandazione. Il punto chiave riconosciuto dalle indagini preliminari è che la saturazione di O₂ rispecchia l’ossigeno legato all’emoglobina. Diversi studi hanno dimostrato che come conseguenza della diffusione passiva dell’ossigeno da sangue esposto a FiO₂ = 80%, le concentrazioni nei tessuti superano di gran lunga quelle attribuibili al rilascio da emoglobina.

Osservazioni

- Il corpus delle evidenze recuperate riguardava pazienti adulti e non era disponibile alcuno studio in ambito pediatrico. Pertanto, l’efficacia di questo intervento non è dimostrata per i pazienti pediatrici.
- Dopo un’attenta valutazione degli studi inclusi, il team di ricerca e il GDG hanno deciso di effettuare delle meta-analisi includendo solo pazienti in anestesia generale con intubazione endotracheale e ventilazione meccanica. Sono stati esclusi gli studi che utilizzavano l’anestesia neuroassiale con maschera facciale o cannula nasale. Infatti, in un’analisi di metaregressione che considerava l’anestesia generale con intubazione endotracheale come covariata significativa, il tipo di anestesia ha dimostrato di modificare autonomamente l’effetto dell’iperossigenazione. Nell’anestesia neuroassiale con cannula nasale o maschera facciale, il controllo della ventilazione (e quindi il controllo dell’effettiva somministrazione di FiO₂ ad alta saturazione ai polmoni) è limitato ed è stato quindi considerato diverso da un intervento con ventilazione meccanica.
- I benefici dell’iperossigenazione tendevano ad essere maggiori nella chirurgia colorettale aperta piuttosto che in altri tipi di chirurgia, ma non è stata trovata alcuna associazione significativa tra il tipo di intervento e gli effetti dell’iperossigenazione.
- Il GDG ha sottolineato che i benefici di questo intervento sono osservabili solo quando può essere implementato sia mediante intubazione durante l’operazione, sia utilizzando una maschera ad alto flusso nell’immediato postoperatorio.
- Sono state discusse altre potenziali fonti di eterogeneità, tra cui l’età della popolazione (i pazienti anziani possono trarre maggiori benefici) e la durata dell’intervento chirurgico. È noto che la chirurgia colorettale presenta un rischio maggiore di SSI rispetto ad altre procedure chirurgiche e l’iperossigenazione può essere positiva in questo gruppo di pazienti a causa della predominanza di batteri anaerobi nella flora colonica.
- Nessuno degli studi clinici che riportavano eventi avversi durante la somministrazione di FiO₂ all’80% ha evidenziato una differenza significativa nelle complicanze polmonari o in altri eventi avversi (1-4). Tuttavia, il GDG ha discusso i possibili danni dell’iperossiemia, in particolare nei pazienti con malattia polmonare ostruttiva (ad esempio, la malattia polmonare ostruttiva cronica), come l’atelettasia da
riassorbimento con esposizione ad ossigeno ad alta concentrazione e la possibilità di depressione respiratoria, in particolare nel periodo postoperatorio. È stato inoltre sottolineato che gli eventi avversi potrebbero non essere stati considerati adeguatamente negli studi inclusi. Inoltre, vi è stata una notevole variabilità nei criteri di esclusione per le malattie polmonari sottostanti, in particolare per la broncopenneumopatia cronica ostruttiva.

- Il GDG ha discusso i risultati di uno studio che indicava che la sopravvivenza a lungo termine può essere migliore con la normale ossigenazione (5). Tuttavia, lo studio era sottopotenziato per la sopravvivenza e la sopravvivenza più breve era stata osservata prevalentemente in un sottogruppo di pazienti con patologie maligne, il che è biologicamente poco plausibile. Il follow-up a lungo termine dello studio Enigma non ha mostrato alcuna differenza nella sopravvivenza (2). Pertanto, il GDG ha concluso che non vi erano evidenze convincenti di un aumento della mortalità attribuibile all'iperossigenazione durante il periodo perioperatorio.

- Il GDG ha evidenziato che i benefici dell'iperossigenazione sono massimizzati quando si mantengono la normotermia e la normovolemia. (Cfr. capitoli 4.13 e 4.15 per le raccomandazioni riguardanti normotermia e normovolemia.)

- Il GDG ha anche riconosciuto che gli studi sono stati condotti solo in paesi ad alto reddito.

Background

È dimostrato che un flusso sanguigno ottimizzato al sito di incisione chirurgica riduce i tassi di SSI poiché evita ipotermia, ipossia e riduce la perfusione (6). Dal 2000 sono state pubblicate diverse prove sull'impiego dell'iperossigenazione durante il periodo perioperatorio e sulla potenziale associazione con tassi inferiori di SSI (vedi Sintesi delle evidenze). Questi studi comprendono RCT, meta-analisi e follow-up della sopravvivenza a lungo termine delle corrispondenti originali.

L'intervento consiste nel somministrare ai pazienti ossigeno all'80% rispetto alla normale saturazione del 30%. Ai pazienti viene normalmente somministrato ossigeno al 100% per 30 secondi / 2 minuti prima dell'intubazione e si mantiene poi la "normossia", che corrisponde ad una saturazione del 30 - 35% di FiO₂, o l'"iperossia", corrispondente all’80%.

Le argomentazioni a favore di livelli di ossigeno superiori allo standard del 30% si basano in larga misura su due nozioni (7). La prima è che l'incisione chirurgica può non essere adeguatamente irrorata e quindi potrebbe ricevere un apporto di ossigeno sostanzialmente maggiore se nel sangue è presente una pressione parziale dell'ossigeno più elevata (8). L'altra idea è che i sistemi di difesa del paziente potrebbero essere ulteriormente migliorati mediante pressioni parziali più elevate dell’ossigeno, in particolare favorendo i processi microbicidi dei neutrofili (9).

L’argomentazione relativa all’incremento delle attività microbicide si basa sull’affinità della nicotinamida adenina dinucleotide fosfato ossidasi per l’ossigeno. La Km (Costante di Michaelis) dell’enzima per l’ossigeno è 5-20 µM Hg O₂ (10,11). È dimostrato che la tensione dell’ossigeno nei siti infetti è notevolmente ridotta rispetto a quella della maggior parte dei tessuti non infetti, con una PO2 di circa 25 mM di ossigeno, equivalente ad una saturazione del 3% (12).

La somministrazione perioperatoria di ossigeno è stata prevista nelle linee guida per la pratica clinica emanate da enti professionali o autorità nazionali (Tabella 4.12.1). Sia il bundle per la prevenzione delle SSI inglesi che quello scozzese, sia le linee guida del Royal College of Physicians of Ireland che quelle NICE inglesi raccomandano il mantenimento di una saturazione di ossigeno nell'emoglobina di almeno il 95% (13-16). Le linee guida per la prevenzione delle SSI di SHEA/IDSA raccomandano di ottimizzare l'ossigenazione dei tessuti mediante somministrazione di ossigeno supplementare durante e immediatamente dopo le procedure chirurgiche che prevedono la ventilazione meccanica (17).
Box 4.12.1- Raccomandazioni sull’ossigenazione secondo le linee guida disponibili

<table>
<thead>
<tr>
<th>Linee Guida</th>
<th>Raccomandazioni sull’ossigenazione</th>
</tr>
</thead>
<tbody>
<tr>
<td>NICE (2008) (15)</td>
<td>Ossigeno sufficiente a mantenere la saturazione dell’emoglobina ad oltre il 95%.</td>
</tr>
<tr>
<td>The Royal College of Physicians of Ireland (2012) (18)</td>
<td>La saturazione dell’emoglobina è mantenuta oltre il 95% (o di più se è presente un’insufficienza respiratoria)</td>
</tr>
<tr>
<td>Health Protection Scotland Bundle (2013) (13)</td>
<td>La saturazione dell’emoglobina è mantenuta oltre il 95% (o di più se è presente un’insufficienza respiratoria)</td>
</tr>
<tr>
<td>UK High impact intervention care bundle (2011) (13)</td>
<td>La saturazione dell’emoglobina è mantenuta oltre il 95% (o di più se è presente un’insufficienza respiratoria) sia durante che dopo l’intervento (sala di risveglio).</td>
</tr>
</tbody>
</table>

A seguito di un’analisi approfondita delle fonti e della portata delle evidenze nelle attuali line-guida, i membri del GDG hanno deciso di condurre una revisione sistematica per valutare le evidenze disponibili circa l’ossigenazione perioperatoria ottimale.

Una recente revisione sistematica si è basata sulle medesime domande PICO delle linee guida (19) ma le conclusioni di Wetterslev e colleghi sono sostanzialmente differenti da quelle qui esposte. Benché per l’analisi siano stati utilizzati gli stessi dati, gli autori non hanno condotto un’analisi su un sottogruppo basata sul tipo di anestesia (ossia generale con intubazione endotracheale vs. neuroassiale con maschera facciale o cannula nasale) come è stato fatto qui, sulla scorta delle forti pressioni del GDG. Nella revisione di Wetterslev et alii, l’anestesia generale non è stata identificata come covariate significativa e, di conseguenza, non ne è stato tenuto conto nell’analisi finale, arrivando così a risultati diversi. Il comitato è fortemente convinto che l’approccio scelto qui sia di livello superiore e che la differenza nei risultati sia di importanza critica per la presentazione delle raccomandazioni.

Sintesi delle evidenze.

Scopo della revisione (Appendice on line 13) era di confrontare gli effetti della FiO2 potenziata (80%) rispetto a quella standard (30-35%) per il rischio di SSI. La popolazione target comprendeva pazienti di tutte le età, sottoposti ad intervento chirurgico. I risultati primari erano gli episodi di SSI e la mortalità correlata alle infezioni.

Abbiamo identificato 15 tial randomizzati controllati (1,2,20-32) per un totale di 7237 pazienti adulti, che studiavano l’utilizzo di della FiO2 potenziata e segnalavano come risultato SSI. Tutti gli studi confrontavano la somministrazione di FiO2 all’80% rispetto al 30-35% (14 studi 30%; uno studio (24) 35%). Il tipo di anestesia e controllo della respirazione variavano da anestesia neuroassiale con maschera facciale o cannula nasale (29-32) ad anestesia generale con intubazione endotracheale e ventilazione meccanica (1,2,20-28). Anche gli interventi chirurgici erano diversi ed andavano dalla chirurgia del colon-retto (20,22,23,26) alla chirurgia addominale acuta ed elettiva (1,2,24), dalle procedure ginecologiche e del seno (28) alla fissazione della tibia (27), al taglio cesareo (29,23). Il corpus delle evidenze raccolte riguardava pazienti adulti e non c’erano studi disponibili sulla popolazione pediatrica. La ricerca bibliografica non
ha rilevato studi che riportassero dati sulla mortalità correlata alle SSI.

Dopo un'accurata valutazione degli studi inclusi, il team di ricerca e il GDG hanno deciso di eseguire confronti di meta-analisi considerando solo gli studi in cui i pazienti erano sottoposti ad anestesia generale con intubazione endotracheale e ventilazione meccanica (1, 2, 20-28). Per la raccomandazione non si è tenuto conto degli studi che riguardavano anestesie neuroassiali con maschera facciale o cannuola nasale (29-32). In un'analisi di meta-regressione che introduce l'anestesia generale con intubazione endotracheale come covariata significativa, il tipo di anestesia ha dimostrato di modificare in modo indipendente l'effetto dell'iperossigenazione. Nell'anestesia neuroassiale con maschera facciale o cannuola nasale, il controllo della ventilazione (e quindi controllo dell'effettiva iperossigenazione) è limitato ed è stato considerato diverso dall'intervento con ventilazione meccanica. Non è stata trovata una significativa associazione tra il tipo di chirurgia e l'efficacia dell'iperossigenazione.

E' stata condotta una meta-analisi di 11 RCT per confrontare l'aumento (80%) del FiO₂ perioperatorio rispetto allo standard (30-35%) nei pazienti sottoposti a procedure chirurgiche in anestesia generale con intubazione endotracheale (1, 2, 20-28). Le evidenze, nel complesso di qualità discreta, dimostrano che in questa popolazione l'iperossigenazione perioperatoria è vantaggiosa nella riduzione delle SSI rispetto al FiO₂ perioperatorio standard (OR: 0,72; 95% CI: 0,55-0,94). La qualità delle prove di questo confronto era discreta per incoerenza.

Ulteriori fattori considerati nella formulazione delle raccomandazioni

Valori e preferenze

Per quanto riguarda questo intervento non è stato trovato alcuno studio sui valori e le preferenze dei pazienti. Il GDG ha concluso che tutti i pazienti, le strutture sanitarie e i politici approveranno l'intervento. Il gruppo di lavoro ha riconosciuto che la somministrazione di ossigeno con una maschera potrebbe essere abbastanza fastidiosa per i pazienti nel momento postoperatorio in cui vengono estubati e risvegliati dall'anestesia.

Utilizzo delle risorse

Nei Paesi a basso e medio reddito, la disponibilità di ossigeno (approvvigionamento e distribuzione) e i relativi costi sono un problema che grava sulle risorse disponibili; va quindi incoraggiata la produzione locale di ossigeno negli ospedali. E' stato tuttavia sottolineato che anche quando è attuata, le attrezzature - sia per la concentrazione che per la produzione di ossigeno (ossia, serbatoi e pompe di generazione) - non sempre sono economicamente vantaggiose o prontamente disponibili. La mancanza di controlli sulla qualità (può verificarsi, ad esempio, la contaminazione batterica o micotica dei serbatoi, soprattutto durante la condensazione), serbatoi erroneamente etichettati, problemi di continuità della produzione e manutenzione delle infrastrutture (ad esempio per mancanza di elettricità) sono altre considerazioni da fare in situazioni di limitatezza delle risorse. E' stato inoltre fatto notare che sarebbe necessaria una maschera a flusso elevato per mantenere l'iperossigenazione nel postoperatorio dei pazienti estubati, e che questo sarebbe un ulteriore costo. Inoltre, poiché può essere scomodo per i pazienti di indossare una maschera per 2-6 ore dopo un intervento chirurgico, potrebbe essere un peso aggiuntivo sul personale. In ambienti dove l'ossigeno medico è scarso, i responsabili politici non possono considerare questa raccomandazione una priorità.

Limiti della ricerca

I membri del GDG hanno evidenziato la limitatezza delle evidenze disponibili in alcune aree e che sono necessarie ulteriori ricerche sugli effetti dell'iperossigenazione nella riduzione dei tassi di SSI. In particolare, dovrebbero essere condotti studi sulla popolazione pediatrica oltre il periodo neonatale. Sono necessarie ulteriori ricerche in ambiti con risorse limitate, garantendo nel contempo che le misure basilari di prevenzione e controllo delle infezioni siano in atto e comprendano diverse procedure chirurgiche. La ricerca è anche necessaria per studiare i benefici dell'iperossigenazione post-estubazione, le diverse durate, le concentrazioni e le vie di somministrazione dell'ossigeno. Poiché il meccanismo dell'effetto dell'iperossigenazione sull'incidenza delle SSI non è completamente chiaro, serve una ricerca traslazionale per esaminare questi meccanismi. Gli studi dovrebbero anche tenerne conto dell'importanza della normovolemia e della normotermia. Tutti gli studi dovrebbero essere RCT.
e avere come outcome le SSI definite secondo i criteri CDC e sub-specificate secondo lo spazio coinvolto: superficiale, profondo e organico.

Riferimenti

4.13 Mantenere normale la temperatura corporea (normotermia)

Raccomandazione

Il panel suggerisce l'uso di dispositivi riscaldanti in sala operatoria e durante l'intervento chirurgico per riscaldare il corpo del paziente allo scopo di ridurre le SSI.

(*Raccomandazione condizionale, qualità delle evidenze moderata*)

Razionale della raccomandazione

- Nel complesso, evidenze di qualità moderata fornite da due RCT mostrano che il mantenere la normotermia apporta un beneficio significativo nel ridurre il rischio di SSI rispetto alle cure standard non riscaldanti. Il GDG ha unanimemente concordato che in sala operatoria dovrebbero essere utilizzati dispositivi di riscaldamento per evitare l'ipotermia del paziente durante l'intervento chirurgico al fine di ridurre il rischio di SSI e, soprattutto importante, altre complicanze associate alla chirurgia (vedi sotto). Considerando la potenza delle evidenze (media, ma basata solo su 2 piccoli RCT), il GDG non ha raggiunto il pieno consenso su questa raccomandazione. Il GDG ha valutato che le evidenze disponibili a sostegno di questa raccomandazione sono limitate. É stato anche fatto notare che non è stato identificato nessuno studio osservazionale che indaghi sul riscaldamento corporeo con unoutcome di SSI.

- Tuttavia, il GDG ha sottolineato che le strategie di riscaldamento comportano ulteriori rilevanti benefici, come la diminuzione degli eventi del miocardio, della perdita di sangue e della necessità di trasfusioni.

- Il GDG ha convenuto che le evidenze erano insufficienti per individuare la temperatura target da raggiungere e mantenere o il dispositivo ottimale per il riscaldamento del paziente (ad esempio, fluidi riscaldanti o semplici coperte). L’obiettivo generalmente accettato è una temperatura interna >36°C, considerando che si definisce “ipotermia” (o bassa temperatura corporea) una temperatura interna inferiore a 36°C, che è comune durante e dopo interventi chirurgici importanti di durata superiore alle due ore. Non è stato tuttavia possibile raggiungere un accordo sul tempo pre e post-operatorio ottimale per il riscaldamento.

Osservazioni

- Gli studi inclusi sono stati condotti in Paesi ad alto reddito e su popolazioni di pazienti adulti. Tuttavia, il GDG considera questa raccomandazione valida anche per i pazienti pediatrici.

- Il gruppo di revisione sistemica e il GDG hanno deciso di escludere lo studio di Wong e colleghi (1) perché la domanda PICO chiedeva un confronto tra riscaldamento e non riscaldamento, mentre lo studio Wong applicava procedure di riscaldamento in entrambi i gruppi. Ciononostante, il GDG ha riconosciuto che lo studio evidenziava una tendenza alla riduzione delle SSI nel gruppo di intervento, che prevedeva un riscaldamento più intenso.

- Il GDG ha identificato un potenziale danno da ustioni cutanee, a seconda del dispositivo di riscaldamento utilizzato (possibile con materassi riscaldanti a conduzione).

- Si è anche accennato che l’aumento di temperatura all’interno dell’ambiente di lavoro può essere un problema per l’équipe chirurgica. Da notare, che alzare la temperatura ambientale non è un’opzione per riscaldare il paziente, in quanto causa disagio termico al personale, con un aumento del rischio di gocciolamento di sudore sul sito chirurgico.

Background

Si definisce ipotermia (o bassa temperatura corporea) una temperatura interna inferiore a 36°C, situazione comune durante e dopo interventi chirurgici importanti che si protraggono per più di due ore. Il corpo umano ha una sezione centrale, che racchiude la maggior parte degli organi, in cui la temperatura è rigidamente regolata e una periferica dove la temperatura varia ampiamente (2). La perdita di calore viene compensata riducendo il flusso sanguigno attraverso la pelle e aumentando la produzione di calore, principalmente inducendo l’attività muscolare (brividi) e aumentando il metabolismo basale. Tipicamente, la parte esterna del corpo può essere 2-4°C più fredda rispetto a quella centrale (2).

L’esposizione all’ambiente freddo della sala operatoria e a compromissione della termoregolazione indotta dagli anestetici sono gli eventi più comuni che portano all’ipotermia (3,4).
L'esposizione della cute nella fase perio operatoria può aumentare la dispersione di calore. Inoltre, le somministrazioni endovenose di fluidi freddi raffreddano direttamente i pazienti. I sedativi e gli anestetici inibiscono la normale risposta al a freddo, con conseguente aumento del flusso sanguigno periferico e maggiore dispersione di calore (3,4). All'inizio dell'anestesia, questi effetti si manifestano con una rapida diminuzione della temperatura interna causata dalla ridistribuzione del calore dal centro verso la periferia. A questa iniziale diminuzione fa seguito un calo più graduale, che rispecchia la perdita di calore continua. Con l'analgesia epidurale o spinale, il blocco periferico della vasocostrizione al di sotto del livello del blocco nervoso si traduce in vasodilatazione e maggiore perdita costante di calore.

Per i motivi di cui sopra, l'ipotermia involontaria non terapeutica è considerata un effetto negativo dell'anestesia generale e locale (5). Le ricerche pubblicate hanno correlato l'ipotermia perioperatoria non pianificata alla compromissione della guarigione della ferita, ad eventi avversi di tipo cardiaco, all'alterazione del metabolismo dei farmaci e alle coagulopatie (5-7).

Non è chiaro come il mantenere la normotermia nella parte centrale del corpo possa ridurre l'incidenza di SSI. Tutti gli studi disponibili misurano la temperatura centrale e non quella periferica. Tuttavia, è altamente probabile che il calo della temperatura interna centrale si traduca in una riduzione della temperatura cutanea del sito operatorio. Non è stato comunque dimostrato che il riscaldamento della zona incisionale diminuisca i tassi di SSI (8). Una recente revisione Cochrane sull' effetto di fluidi endovenosi riscaldati non ha rilevato differenze statisticamente significative nella temperatura corporea interna o i brividi tra gli individui ai quali erano stati somministrati fluidi riscaldati e quelli che li avevano ricevuti a temperatura ambiente (9), ma le SSI non erano l’outcome primario. Un’ altra revisione Cochrane di interventi utilizzati per il trattamento dell’ipotermia postoperatoria non voluta ha concluso che il riscaldamento attivo riduce il tempo necessario per raggiungere la normotermia. Sono stati studiati diversi dispositivi di riscaldamento, quali il riscaldamento forzato dell’aria, dispositivi per la circolazione di acqua calda, coperte radianti, radiatori e coperte elettriche. Anche in questo caso, le SSI non erano tra gli outcome primari della revisione (10). Il monitoraggio della temperatura può essere effettuato in modo non invasivo, oralmente o tramite misurazione della temperatura dell’orecchio con gli infrarossi ma si tratta di rilevazioni imprecise. Nel periodo intraoperatorio sono considerati accettabili siti di monitoraggio semi-invasivo della temperatura il nasofaringe, l’esofago e la vescica (11).

Alcuni bundle e linee guida raccomandano che nel periodo peripoeratorio la temperatura corporea sia mantenute al di sopra di 35,5-36°C , anche se non c'è consenso tra queste raccomandazioni sul limite inferiore o il timing ottimale per la normotermia (Tabella 4.13.1).

Box 4.13.1- Raccomandazioni sullo screening e decolonizzazione da S. aureus secondo le linee guida e i bundle disponibili

<table>
<thead>
<tr>
<th>Linee Guida (anno di pubblicazione)</th>
<th>Raccomandazioni sul controllo della temperatura corporea (normotermia)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHEA/IDSA (2014) (12)</td>
<td>Mantenere la normotermia (temperatura di 35,5°C o superiore) nel perioperatorio in pazienti chirurgici anestetizzati per almeno 60 minuti.</td>
</tr>
<tr>
<td>Royal College of Physicians of Ireland (2012) (13)</td>
<td>Temperatura corporea mantenuta al di sopra di 36° C nel periodo perioperatorio (esclusi i pazienti cardiaci).</td>
</tr>
<tr>
<td>Health Protection Scotland Bundle (2013) (14)</td>
<td>Temperatura corporea mantenuta al di sopra di 36° C nel periodo perioperatorio (esclusi i pazienti cardiaci).</td>
</tr>
</tbody>
</table>
A seguito di un’analisi approfondita delle fonti e della potenza delle evidenze nelle linee guida disponibili, il GDG ha deciso di effettuare una revisione sistematica per valutare l’efficacia del riscaldamento corporeo nella prevenzione delle SSI.

Sintesi delle evidenze

Sono stati individuati due RCT (16,17) per un totale di 478 pazienti (uno era uno studio multicentrico). Entrambi gli studi confrontavano l’effetto del riscaldamento corporeo nel gruppo di intervento vs. nessun riscaldamento nel gruppo di controllo. Entrambi gli studi prendevano in considerazione il riscaldamento pre e intraoperatorio; non sono stati identificati studi che valutassero l’effetto del riscaldamento postoperatorio sulle SSI. La popolazione studiata era di pazienti adulti sottoposti a interventi elettivi del colon-retto, di ernia, procedure chirurgiche vascolari e mammarie. Non era disponibile alcuno studio sulla popolazione pediatrica. Non è stato identificato alcuno studio osservazionale che avesse le SSI come outcome primario. La ricerca bibliografica non ha identificato studi che riferissero di mortalità SSI correlata.

Evidenze di qualità moderata dimostrano che il riscaldamento del corpo apporta un beneficio significativo rispetto al non riscaldamento per ridurre il rischio di SSI (OR: 0,33; 0,33 95% CI: 0,17-0,62).

Ulteriori fattori considerati nella formulazione delle raccomandazioni

Valori e preferenze

Non è stato recuperato alcuno studio sui valori e le preferenze dei pazienti rispetto a questo intervento. Il GDG ha sottolineato che dolore, nausea e brividi sono tra gli eventi avversi più frequentemente segnalati in seguito all’abbassamento della temperatura corporea in sala operatoria. Pertanto, il GDG riconosce che i pazienti possono preferire di essere mantenuti al caldo durante la procedura chirurgica e che sarebbero anche favorevoli all’intervento al fine di ridurre il rischio di SSI. Per contro, il GDG è anche convinto che i pazienti desiderano essere protetti da ustioni cutanee dovute alla temperatura e alla pressione da contatto (ad esempio con i materassi riscaldanti a conduzione).

Utilizzo delle risorse

Il GDG ha sottolineato che l’uso di dispositivi riscaldanti, come i condizionatori d’aria o le coperte radianti, fa aumentare lo spazio e l’energia necessari per immagazzinare e far funzionare le apparecchiature. I costi di acquisto e manutenzione rappresentano inoltre un notevole onere finanziario, in particolare per i LMIC, dove anche la disponibilità e l’approvvigionamento sono un problema.

È stato sottolineato che l’uso di dispositivi di riscaldamento può ridurre il rischio di eventi avversi e, di conseguenza, i costi ospedalieri complessivi (18-20). Il GDG ha osservato che, data la mancanza di evidenze utili ad identificare i dispositivi di riscaldamento ottimali, si può supporre che le normali coperte possano funzionare altrettanto efficientemente di quelle elettriche per scaldare il paziente, in particolare nelle realtà povere di risorse.

Limiti della ricerca

Il GDG ha sottolineato che sono necessari RCT ben progettati per identificare il target di temperatura, i dispositivi ottimali (scaldapiedi, materassi, coperte, ecc.), i tempi e la durata adeguati del riscaldamento (pre/intra-/postoperatorio). Le evidenze dovrebbero concentrarsi sulle SSI come outcome primario e possibilmente affrontare il rapporto costo-efficacia dell’intervento. È stato inoltre sottolineato che non vi sono evidenze dai LMIC o nella popolazione pediatrica, che rappresentano importanti aree di ricerca.

Riferimenti

6. Rajagopalan S, Mascha E, Na J, Sessler DI. The effects of mild perioperative hypothermia on
4.14 Utilizzo di protocolli per il controllo intensivo della glicemia nel perioperatorio

Raccomandazione

Per ridurre il rischio di SSI, il panel suggerisce l’uso di protocolli per il controllo intensivo perioperatorio della glicemia, sia nei pazienti chirurgici adulti diabetici sia nei non diabetici. *(Raccomandazione condizionale, qualità delle evidenze bassa)*

Razionale della raccomandazione

- Evidenze generali di bassa qualità mostrano che un protocollo con livelli target di glucosio nel sangue più rigidi apporta un vantaggio significativo nella riduzione dei tassi di SSI, rispetto a un protocollo convenzionale. C’era evidenza che l’effetto era minore negli studi che avevano utilizzato solo il controllo intensivo della glicemia intraoperatoria rispetto a quelli che avevano utilizzato un protocollo intensivo post-operatorio o intra e post-operatorio. Tra i protocolli intensivi, l’effetto è stato simile in studi con un livello di glicemia target ≤110 mg/dL (6,1 mmol/L) e un livello target massimo di 110-150 mg/dL (6,1-8,3 mmol/L). Analogamente, all’analisi di meta-regressione, non vi erano evidenze che l’effetto del controllo intensivo della glicemia differisse tra gli studi su pazienti diabetici e non diabetici.
- Pertanto, il GDG ha unanimemente convenuto che la raccomandazione di utilizzare protocolli per il controllo intensivo perioperatorio della glicemia debba applicarsi sia ai diabetici che ai non diabetici. Tuttavia, il GDG ha ritenuto che le evidenze disponibili non consentissero di definire un livello target ottimale di glicemia. La forza di questa raccomandazione è stata considerata condizionale.

Osservazioni

- Il GDG ha osservato che la maggior parte degli studi sono stati effettuati in strutture di terapia intensiva e che non sono stati effettuati studi sulla popolazione pediatrica. Pertanto, l’efficacia di questo intervento non è dimostrata per i pazienti pediatrici.
- In generale, i livelli target della glicemia nel gruppo di protocollo intensivo erano ≤150 mg/dL (8,3 mmol/L), mentre quelli nel gruppo di protocollo convenzionale erano tutti <220 mg/dL (12,2 mmol/L).
- In tutti gli studi la somministrazione endovenosa di insulina è stata effettuata nel gruppo di protocollo intensivo e, nella maggior parte degli studi, anche nel gruppo di protocollo convenzionale. Tre studi (1-3) utilizzavano la somministrazione sottocutanea nel gruppo convenzionale. Alcuni studi utilizzavano una dose fissa elevata di insulina con destrosio al 20% infuso separatamente per mantenere il livello di glucosio nel sangue tra 70 e 110 mg/dL (“clamp glicemico”).
- La durata e il timing del controllo glicemico differivano da uno studio all’altro. Le definizioni di controllo glicemico postoperatorio variavano da 18 ore e “fino all’alimentazione enteral” ad un massimo di 14 giorni.
- Cinque trial (1-3,5,6) avevano studiato solo pazienti diabetici, 8 studi (4,7-13) sia diabetici che non diabetici e 2 (14,15) solo pazienti non diabetici. Gli interventi più frequenti riguardavano la cardiochirurgia. Alcuni studi si sono concentrati su pazienti sottoposti ad altri interventi di chirurgia maggiore, compresa quella addominale.
- Il GDG ha sottolineato che l’ipoglicemia è un possibile danno associato a protocolli con livelli target rigidi della glicemia. L’ipoglicemia comporta un grave rischio di complicanze mortali, quali gli eventi cardiaci. Negli studi sono state utilizzate definizioni diverse per gli eventi ipoglicemici e variavano da livelli di glucosio nel sangue ≤ 40 mg/dL (2,2 mmol/L) a ≤ 80 mg/dL (4,4 mmol/L).
- I dati provenienti dalle evidenze disponibili non hanno mostrato alcuna differenza nel rischio di morte e ictus tra l’uso di un protocollo intensivo e quello di uno convenzionale.

Background

I livelli di glucosio nel sangue aumentano durante e dopo un intervento, a causa dello stress chirurgico. La chirurgia provoca una risposta allo stress che si traduce in un rilascio di ormoni catabolici e inibizione dell’insulina. Inoltre, lo stress chirurgico influenza la funzione delle cellule beta pancreatiche, che si
traduce in livelli più bassi di insulina plasmatica. Presi insieme, questa ipoinsulinemia relativa, la resistenza all’insulina e l’eccessivo catabolismo derivante dall’azione anti-metabolica degli ormoni rendono i pazienti chirurgici ad alto rischio di iperglicemia, anche se non sono diabetici (16). Diversi studi osservazionali (17-20) hanno mostrato che l’iperglicemia è associata ad un aumento del rischio di SSI e quindi ad un maggior rischio di morbilità, mortalità, costi sanitari più elevati sia per i pazienti diabetici che per i non diabetici sottoposti a trattamenti chirurgici diversi. Risultati contrastanti sono stati riportati in merito alle diverse opzioni di trattamento per controllare l’iperglicemia in pazienti diabetici e non, sui livelli target ottimali di glucosio nel sangue e sul timing ideale per il controllo della glicemia (intra- e/o postoperatorio). Inoltre, alcuni studi che miravano a un livello perioperatorio relativamente basso del glucosio hanno evidenziato il rischio di effetti avversi associati ai protocolli intensivi in quanto possibili causa di ipoglicemia (21-24). Diverse organizzazioni hanno emanato raccomandazioni per quanto riguarda il controllo perioperatorio della glicemia (Tabella 4.14.1). Mentre la maggior parte delle raccomandazioni si concentra solo sul paziente diabetico, quelle pubblicate da SHEA/IDSA (25) e dall’American College of Physicians (26) si applicano a tutti i pazienti chirurgici. Raccomandano livelli target compresi tra 140-200 mg/dL (7,8-11,1 mmol/L) o limiti massimi di 180 mg/dL (10mmol/L) o 198 mg/dL (11mmol/L). A causa del rischio di ipoglicemia, si deve evitare di mirare a livelli inferiori. (26,27).

<table>
<thead>
<tr>
<th>Linee Guida (anno di pubblicazione)</th>
<th>Raccomandazioni sul controllo perioperatorio della glicemia</th>
</tr>
</thead>
</table>
| SHEA/IDSA (2014) (12) | Controllo della glicemia durante l’immediato postoperatorio per i pazienti di cardiochirurgia e non.
| | a) Mantenere la glicemia postoperatoria a 180 mg/dL o più bassa.
| | b) Il controllo post-operatorio intensivo della glicemia (livelli target inferiori a 110 mg/dL) non ha dimostrato di ridurre il rischio di SSI e può portare effettivamente ad un aumento dei tassi di outcome avversi, compresi ictus e morte. |
| NICE (2018) (28) | Non somministrare di routine l’insulina ai pazienti non diabetici per ottimizzare la glicemia post-operatoria come mezzo per ridurre il rischio di SSI. |
| Health Protection Scotland Bundle (2013) (29) | Accertarsi che il livello di glucosio del paziente diabetico sia mantenuto a <11 mmol/L per tutta la durata dell’intervento. |
| The Royal College of Physicians of Ireland (2012) (30) | Assicurarsi che, se il paziente è diabetico, il livello di glucosio sia mantenuto a <11 mmol/L per la durata dell’intervento. |
| The Society of Thoracic Surgeons practice guideline series (2009) (27) | Tutti i pazienti diabetici sottoposti a interventi di cardiochirurgia devono ricevere un’infusione di insulina in sala operatoria e per almeno 24 ore dopo l’intervento per mantenere livelli di glucosio sierico ≤180 mg/dL. |
| American College of Physicians: clinical practice guideline (2011) (26) | Non utilizzare la terapia insulinica intensiva (4,4-6,1 mmol/L[80-110 mg/dL]) per normalizzare la glicemia in pazienti di UTI/Chirurgia
Se l’insulino terapia è utilizzata in pazienti di UTI/Chirurgia, si raccomanda un livello target di glicemia da 7,8 a 11,1 mmol/L (140-200 mg/dL) |

A seguito di un'analisi approfondita delle fonti e della forza dell'evidenza nelle linee guida in uso, i membri del GDG hanno deciso di condurre una revisione sistematica per valutare l'impatto dei valori glicemici periooperatori sul rischio di SSI e di determinare i target periooperatori ottimali nei pazienti chirurgici, sia diabetici che non, per prevenire le SSI.

Sintesi delle evidenze

Scopo della revisione delle evidenze (Appendice online 15) è stato di valutare se l'uso di protocolli per il controllo periooperatorio intensivo della glicemia è più efficace nel ridurre il rischio di SSI rispetto ai protocolli convenzionali con obiettivi di glucosio nel sangue meno restrittivi. La popolazione studiata era composta da pazienti di tutte le età, diabetic e non, sottoposti a diversi tipi di intervento chirurgico. L'outcome primario era l'insorgenza di SSI e di mortalità SSI-correlata. Sono stati identificati in totale 15 RCT (1-15), per un totale di 2836 pazienti, che confrontavano protocolli di controllo intensivo dei livelli di glucosio nel periooperatorio rispetto a protocolli convenzionali meno rigorosi. Otto studi riguardavano pazienti adulti sottoposti a chirurgia cardica (1, 2, 4, 6, 9-11, 15), sei pazienti sottoposti a chirurgia cardiaca (3, 5, 7, 12, 14) e un altro studio pazienti sottoposti a clipping di aneurisma cerebrale in emergenza (8). Nessuno studio disponibile considerava una popolazione pediatrica. In 2 studi (4, 7), è stato effettuato il controllo del glucosio soltanto durante l'intervento. Otro studi (1, 2, 6, 8, 9, 11, 13, 15) analizzavano il controllo della glicemia intra e postoperatoria e 5 studi (3, 5, 10, 12, 14) si focalizzavano sul post-operatorio.

Nessuno degli studi aveva le SSI come outcome primario. La maggior parte avevano outcome combinati di complicanze postoperatorie. Anche la definizione di SSI si differenziava nei vari studi.

Negli studi selezionati era presente una sostanziale eterogeneità nella popolazione, in particolare per quanto riguardava il momento di applicazione del protocollo di controllo intensivo della glicemia nel periooperatorio e i livelli target. Per questo motivo, sono state eseguite meta-analisi separate per valutare i protocolli intensivi vs. quelli convenzionali in contesti diversi (cioè, nella popolazione diabetica, non diabetica e mista) con controlli intra e post-operatori, e in sperimentazioni cliniche con valori massimi della glicemia di ≤110 mg / dl (6,1 mmol / L) e 110-150 mg / dl (6,1-8,3 mmol / L) (Appendice web 15).

Nel complesso, ci sono prove di bassa qualità che un protocollo con livelli target di glucosio nel sangue più rigorosi apporti un vantaggio significativo nel ridurre i tassi di SSI rispetto ad un protocollo convenzionale (OR: 0,43; 95% CI: 0,29-0,64). Inoltre, in una meta-analisi di regressione non c'era alcuna prova che l'effetto del controllo intensivo della glicemia differisse tra gli studi su pazienti diabetici e non diabetici (P = 0,590). E' stato provato che l'effetto era minore in studi che hanno utilizzato il controllo intensivo della glicemia solo durante gli interventi (OR: 0,88; 95% CI: 0,45-1,74) rispetto a studi che utilizzavano controlli solo nel postoperatorio o in entrambi i momenti (OR: 0,47; 95% CI:0,25-0,55; P = 0,049 per la differenza tra OR). Tra i protocolli intensivi, l'effetto era simile in studi con limite massimo di glucosio di ≤110 mg / dl (6,1 mmol / L) e110-150 mg / dl (6,1-8,3 mmol / L) (P = 0,328).

I dati dalle prove disponibili non mostravano alcuna differenza nel rischio di morte post-operatoria e ictus con l'uso di un protocollo intensivo rispetto ad un protocollo convenzionale (OR: 0,74;95% CI: 0,45-1,23 e OR: 1,37; 95% CI: 0.26-7,20, rispettivamente). Lo studio di Ghandi e colleghi è stato l'unico che ha segnalato più ictus e morti nel gruppo intensivo (11). Questo studio ha avuto a disposizione dati confrontabili di rilevazioni glicemiche di 24 ore in terapia intensiva su entrambi i gruppi, anche se quelli del gruppo intensivo erano significativamente inferiori nell'infraoperatorio e in partenza. Altri studi hanno mostrato uguali o anche meno ictus e/o decessi nel gruppo intensivo, ma questi risultati non erano significativi. Nelle analisi di meta-regressione, non c'erano prove di una differenza di rischio tra studi con un limite massimo di glucosio di ≤110 mg / dl (6,1 mmol / L) e un livello limite massimo di 110-150 mg / dl (6,1-8,3mmol / L) (P = 0,484 per la mortalità e P = 0,511 per ictus).

La meta-analisi degli eventi di ipoglicemia negli 8 RCT che prevedevano come limite massimo di glucosio di ≤110 mg/dl (6.1 mmol/L) hanno mostrato un aumento del rischio di ipoglicemia con l'utilizzo di un protocollo intensivo rispetto ad uno convenzionale (OR: 4,18; 95% CI: 1,79–9,79). Tuttavia, due studi sugli otto compresi in questa analisi non riportavano eventi di ipoglicemia (4, 13) e soltanto tre (3, 7, 14) riportavano numeri significativi di eventi ipoglicemici in più con l’utilizzo di protocolli intensivi. Una meta-analisi di 4 studi (1, 2, 6, 10) ha mostrato un aumento del rischio di eventi ipoglicemici con l’utilizzo di un protocollo rigo ridi con limite massimo di glucosio of 110-150 mg/dl (6.1-8.3 mmol/L) rispetto ad un...
protocollo convenzionale (OR: 9.87; 95% CI: 1.41–69.20) non riportavano eventi di ipoglicemia (1, 2). Tra gli studi che non hanno potuto rientrare nella meta-analisi a causa della mancanza di dati, 2 riportavano un numero significativamente maggiore di eventi di ipoglicemia nel gruppo intensivo (3, 12), mentre non si riscontravano differenze di rischio in un altro studio (9). Nel complesso, il rischio è più elevato con l’utilizzo di protocolli di controllo intensivo del glucosio (OR: 5.55; 95% CI: 2.58–11.96).

Nelle meta-analisi di regressione non si riscontrano evidenze di differenza del rischio di ipoglicemia tra gli studi che avevano come livello target ≤110 mg/dL (6.1 mmol/L) e quelli che lo avevano di 110-150 mg/dL (6.1–8.3 mmol/L) (P=0.413).

Il GDG ha sottolineato che esistono molti studi osservazionali che dimostrano una riduzione delle SSI con un controllo intensivo della glicemia nella popolazione non diabetica. Tuttavia, dopo discussione, il GDG ha concordato di non tener conto dei dati degli studi osservazionali.

Ulteriori fattori considerati nella formulazione delle raccomandazioni

Valori e preferenze

Non sono stati reperiti studi sui valori e le preferenze dei pazienti per quanto riguarda questo intervento. Il GDG è convinto che la maggior parte dei pazienti desideri riceverlo allo scopo di ridurre il rischio di SSI. I pazienti sono preoccupati della possibilità di eventi ipoglicemici così come del monitoraggio regolare dei livelli di glucosio (a volte più volte al giorno) perché questo è associato a frequenti punture.

Utilizzo delle risorse

I membri del GDG hanno sottolineato che, fatta eccezione per gli ambiti di terapia intensiva, è più probabile che i pazienti ricevano un protocollo convenzionale per questioni legate alle risorse e alla capacità di monitorare adeguatamente la glicemia. Il GDG ha evidenziato che l’acquisto e lo stoccaggio (refrigerazione) dell’insulina è un problema economico nei Paesi a basso e medio reddito, dove anche la disponibilità di insulinina è un problema. Anche i presidi per eseguire controlli frequenti sono costosi e in alcune situazioni la disponibilità può essere limitata. Inoltre, il personale medico deve essere adeguatamente addestrato a monitorare correttamente i livelli di glucosio nel sangue e a trattare gli episodi di ipoglicemia. Non ci sono dati disponibili per determinare i costi-benefici dei diversi protocolli.

Limiti della ricerca

I membri del GDG hanno evidenziato che le evidenze disponibili riguardano in buona parte di popolazioni di pazienti di terapia intensiva o cardiochirurgia. C’è bisogno di studiare l’area pediatrica e quelle dei pazienti chirurgici non cardiologici sottoposti a diverse tipologie di intervento. Si devono condurre studi RCT adeguatamente potenziati per confrontare diversi target di glucosio nel sangue al fine di definire meglio il livello ottimale allo scopo di prevenire le SSI ma con un rischio molto limitato di ipoglicemia. Per un dato livello target, devono esserci studi che verifichino la via ottimale di somministrazione dell’insulina, così come studi sulla durata del controllo glicemico nel post-intervento. In particolare, il GDG ha fatto notare la necessità di studi sul costo-beneficio ed altri provenienti dai Paesi a basso e medio reddito.

Riferimenti

4.15 Mantenimento di un volume adeguato di sangue in circolo (normovolemia)

Raccomandazione

Il panel suggerisce di utilizzare una fluidoterapia intaoperatoria mirata (GDFT) per ridurre il rischio di SSI
(Raccomandazione condizionale, qualità delle prove bassa)

Razionale della raccomandazione

- Evidenze nel complesso di scarsa qualità dimostrano che la fluidoterapia intaoperatoria mirata apporta significativi vantaggi nella riduzione dei tassi di SSI rispetto alla gestione dei fluidi standard. Questo effetto è dimostrato anche per il postoperatorio.
- Considerando che sia il sovraccarico di liquidi che l’ipovolemia possono influire su altri outcome clinici, il GDG ha deciso di sottolineare che specifiche strategie di gestione dei fluidi, come quella mirata o quella restrittiva, possano essere utilizzate durante l’intervento chirurgico per scopi diversi dalla riduzione delle SSI, ad esempio, per supportare le funzioni cardiovascolari e renali.
- Considerando la scarsa qualità delle evidenze, così come i suddetti fattori, il GDG ha convenuto di suggerire l’uso della GDFT intraoperatoria e ha deciso che la forza di questa raccomandazione debba essere condizionale.

Osservazioni

- Il corpus delle evidenze recuperate si focalizzava su pazienti adulti e non era disponibile alcuno studio sulla popolazione pediatrica. Pertanto, l’efficacia di questo intervento non è provata per la pediatria.
- La GDFT si riferisce ad un trattamento emodinamico basato sulla titolazione dei fluidi e dei farmaci inotropi secondo l’output cardiaco o parametri simili.
- La gestione restrittiva dei fluidi si riferisce alla somministrazione di un regime a volume ridotto di fluidi nel bolo e/o nel tempo rispetto al mantenimento secondo gli standard locali.
- Il mantenimento standard dei fluidi nel gruppo di controllo si riferisce a regimi fluidoterapici a discrezione del team medico o secondo lo standard locale.
- La maggior parte delle evidenze tra gli studi inclusi confrontava l’efficacia di strategie specifiche di gestione dei fluidi con regimi di fluidoterapia standard nel periodo intraoperatorio. Quattordici RCT studiavano la GDFT (1-14) e 5 erano incentrati sulla gestione restrittiva (15-19). Poiché le domande PICO riguardavano la gestione dei fluidi durante l’intervento chirurgico, questi confronti sono stati utilizzati per formulare la raccomandazione.
- Altri studi confrontavano strategie specifiche di gestione dei fluidi rispetto alla gestione standard nel preoperatorio (20) e/o nel postoperatorio (21-24).
- Si è discusso sul fatto che l’effettivo effetto fisiologico dei fluidi somministrati può differire a seconda di diversi altri fattori, come lo stress chirurgico, la normotermia e l’ossigenazione tissutale.
- Il GDG ha sostenuto che sia il sovraccarico di liquidi che l’ipovolemia possono aumentare la mortalità e la morbidità (25).
- Anche se la strategia ottimale per la GDFT non può essere identificata dai dati pubblicati a causa della eterogeneità dei protocolli utilizzati negli studi inclusi, il panel suggerisce la somministrazione di terapia emodinamica basata su un approccio mirato all’obiettivo durante l’intera procedura chirurgica. L’ottimizzazione si basa preferibilmente sui parametri dinamici di pre-carico (vale a dire sulle variazioni della pressione del polso e di quella sistolica) derivati da misurazioni con catetere arterioso (quando è indicata una linea arteriosa) o con misure alternative minimamente invasive.
- Il GDG ha ritenuto utile l’utilizzo di un algoritmo, tenendo anche conto del fatto che le risorse e l’expertise locali possono essere diverse e limitare le possibilità applicative della strategia ottimale. Infatti, la varietà di algoritmi efficaci su una moltitudine di risultati indica che avere un algoritmo per un obiettivo specifico è il fattore più importante, più di ogni particolare algoritmo associato all’effetto della GDFT.
Background
La guarigione della ferita e la resistenza all'infezione dipendono dalla tensione tissutale dell'ossigeno. Inoltre, un'ossigenazione tissutale sufficiente è essenziale per la sintesi del collagene e la riparazione della ferita (17) ed è migliorata da una adeguata ossigenazione arteriosa. Nel caso ideale, la fluidoterapia perioperatoria impedisce l'ipossia del tessuto, massimizzando la funzione cardiaca e migliorando di conseguenza l'ossigenazione arteriosa. Quale sia la strategia perioperatoria ottimale è però ancora oggetto di dibattito. Nella pratica quotidiana esiste una grande variabilità di regimi e sia all'ipervolemia che all'ipovolemia è stato associato un aumento di mortalità e morbidità. Il sovraccarico di fluidi porta ad ipossia muscolare. A seguito del trauma chirurgico, si innesca una risposta infiammatoria sistemica, che porta a uno spostamento dei fluidi allo spazio extra-vascolare. A seguito di un importante spostamento dei fluidi, può presentarsi un edema generalizzato che ostacola l'ossigenazione tissutale e impedisce la guarigione del tessuto. Al contrario, l'ipovolemia porta all'ipossia arteriosa e tissutale a causa di una diminuzione della gittata cardiaca.

Quale sia la strategia ottimale per la gestione dei fluidi (colloide o cristalloide) tra GDFT, liberal o restrittiva rimane oggetto di controversia. La GDFT fa riferimento alla gittata cardiaca o parametri simili per guidare la somministrazione endovenosa e inotropica, ma ha lo svantaggio della difficoltà di valutare adeguatamente la normovolemia. Il fluido regime liberal e quello restrittivo usano regimi standard che non fanno riferimento alla gittata cardiaca. Ciò non di meno, l'adeguata valutazione della normovolemia in queste strategie resta complessa. Inoltre, gli effetti fisiologici di qualsiasi volume dato di fluido possono variare, a seconda della portata della risposta allo stress chirurgico e non solo per il volume dei fluidi somministrati. Al momento, non esistono né una definizione universale di normovolemia né un metodo standardizzato per la sua valutazione. Alcuni studi valutano la normovolemia dalla produzione urinaria o da marcatori nel siero, mentre altri utilizzano tecniche più invasive, quali la gittata o l'indice cardiaco.

Pochi organismi hanno rilasciato raccomandazioni per quanto riguarda la manutenzione della normovolemia (Tabella 4.15.1). La NICE inglese raccomanda di mantenere un'adeguata perfusione durante l'intervento chirurgico (26). Sulla base di un aggiornamento delle evidenze del 2013, si afferma che la fluidoterapia mirata emodinamica sembra ridurre i tassi di SSI (27). Le linee guida SHEA / IDSA non formulano una raccomandazione specifica sul mantenimento della normovolemia per la prevenzione delle SSI. Tuttavia, in una dichiarazione sull'ossigenoterapia viene indirettamente raccomandato di mantenere un adeguato bilanciamento della volemia (28).

Tabella 4.15.1- Raccomandazioni per il mantenimento della normovolemia secondo le linee guida disponibili

<table>
<thead>
<tr>
<th>Linee Guida (anno di pubblicazione)</th>
<th>Raccomandazioni sulla mantenimento della normovolemia</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHEA/IDSA Raccomandazioni per la pratica (2014) (28)</td>
<td>Nessuna raccomandazione specifica sul mantenimento della normovolemia per la prevenzione delle SSI. Raccomandazione indiretta: "L'ossigeno supplementare è più efficace se combinato con strategie aggiuntive per migliorare l'ossigenazione dei tessuti, compreso il mantenimento della normotermia e l'adeguato reintegro del volume dei fluidi".</td>
</tr>
<tr>
<td>NICE (Aggiornamento 2013) (27)</td>
<td>La terapia emodinamica mirata (titolazione di fluidi e farmaci inotropici per ottenere risultati fisiologici normali o supraoptimali, come la gittata cardiaca e l'ossigenazione) sembra ridurre i tassi di SSI.</td>
</tr>
</tbody>
</table>

SHEA: Society for Healthcare Epidemiology of America; IDSA: Infectious Diseases Society of America; SSI: surgical site infection; NICE: National Institute for Health and Care Excellence;
A seguito di un’analisi approfondita delle fonti e della potenza delle evidenze presenti nelle linee-guida vigenti, i membri del GDG hanno deciso di condurre una revisione sistematica, per valutare l’efficacia di strategie di gestione dei fluidi specifiche rispetto ai regimi standard e determinare se una determinata strategia durante l’intervento chirurgico potrebbe essere vantaggiosa per prevenire le SSI nei pazienti chirurgici.

Sintesi delle evidenze

Scopo della revisione delle evidenze (Appendice online 16) era valutare se strategie specifiche di gestione dei fluidi per conservare la normovolemia sono più efficaci nel ridurre il rischio di SSI rispetto ai regimi di fluidoterapia standard adottati durante gli interventi. La popolazione target comprendeva pazienti di tutte le età sottoposti ad un intervento chirurgico. L’outcome primario era l’occorrenza di SSI e mortalità correlata.

Sono stati identificati ventiquattro RCT (1-24), per un totale di 4.031 pazienti, che confrontavano strategie specifiche di gestione dei fluidi con i regimi standard. Le tipologie di intervento erano: colorettali, addominali, generali, urologici, ginecologici, cardiotoracici, vascolari, ortopedici e altri.

A causa dell’eterogeneità tra gli studi selezionati per tipo di strategia specifica di gestione dei fluidi utilizzata per tutto il periodo perioperatorio, sono state eseguite metanalisi separate per fluidoterapia mirata o restrittiva vs. regimi standard nei periodi pre, intra e postoperatori.

Nel complesso, ci sono prove di bassa qualità che la fluidoterapia mirata intraoperatoria apporti un vantaggio significativo nella riduzione dei tassi di SSI rispetto alla gestione standard (OR: 0,56; 95% CI: 0,35-0,88).

Al contrario, evidenze di scarsa qualità indicavano che la gestione restrittiva intraoperatoria non apporta né vantaggi né danni rispetto alla standard per quanto riguarda la riduzione delle SSI (OR: 0,73; 95% CI: 0,41-1,28).

Uno studio (20) che confrontava la gestione preoperatoria con terapia mirata rispetto alla standard non ha rilevato benefici per ridurre il rischio di SSI (OR: 0,47; 95% CI: 0,13-1,72), mentre una meta-analisi di 2 RCT (22, 23) che eseguiva lo stesso confronto nel postoperatorio mostrava una diminuzione del rischio di SSI nel gruppo con terapia mirata (OR: 0,24; 95% CI: 0,11-0,52). Uno studio (24) che confrontava la gestione postoperatoria restrittiva vs. la standard non ha mostrato differenze nel rischio (OR: 6,20; 95% CI: 0,68-56,56). Allo stesso modo, non ha dimostrato alcun beneficio un RCT (21) che confrontava la gestione combinata pre e postoperatoria tra fluidoterapia mirata e standard (OR: 0,75; 95% CI:0,16-3,52).

Le evidenze raccolte riguardavano solo pazienti adulti. Non è stato individuato alcuno studio sulla popolazione pediatrica. Cinque RCT riportavano che sia l’iper che l’ipovolemia sembrano essere associate ad una maggiore mortalità e morbilità (15, 18, 19, 23, 24).

Ulteriori fattori considerati nella formulazione delle raccomandazioni

Valori e preferenze

Non sono stati reperiti studi sui valori e le preferenze dei pazienti per quanto riguarda questo intervento. Il GDG ha fatto notare che i pazienti sono raramente informati sull’argomento.

Utilizzo delle risorse

Il GDG ha sottolineato che non ci sono studi sui costi o sul rapporto costo-beneficio delle diverse strategie di gestione dei fluidi durante gli interventi chirurgici. Il GDG ha però fatto notare che la fluidoterapia mirata potrebbe richiedere di più risorse, a partire dal fatto che il personale medico deve essere specificamente addestrato. È stato fatto notare che in situazioni di limitatezza delle risorse, l’anestesia è spesso erogata da professionisti non specializzati e potrebbero anche esistere limitazioni nel tipo di fluidi per somministrazione endovenosa disponibili.

Limiti della ricerca

Il GDG ha sottolineato che è necessaria una definizione di normovolemia ampiamente condivisa. Gli studi futuri, tra i quali grandi RCT ben progettati e con definizioni chiare, dovrebbero mirare ad identificare il metodo di misura più preciso e meno invasivo della normovolemia e valutare la sua influenza rispetto all’ossigenazione dei tessuti e alla normotermia. In particolare, si dovrebbero condurre studi nei LMIC. Sono necessarie ulteriori ricerche sull’efficacia di diverse strategie di gestione dei fluidi nella popolazione pediatrica.

Riferimenti

1. Forget P, Lois F, de Kock M. Goal-directed fluid management based on the pulse oximeter-derived pleth variability index reduces lactate levels and

4.16 Teli e camici

Raccomandazioni

1. **Il panel suggerisce che, allo scopo di prevenire le SSI, durante gli interventi chirurgici si debbano utilizzare teli e camici sterili monouso non tessuti oppure teli e camici sterili in tessuto riutilizzabili.**

 Raccomandazione condizionale, qualità delle prove da moderata a molto bassa

2. **Il panel suggerisce di non utilizzare teli da incisione adesivi in plastica, con o senza proprietà antimicrobiche, allo scopo di prevenire la SSI.**

 Raccomandazione condizionale, qualità delle prove da bassa a molto bassa

Razionale delle raccomandazioni

- È buona pratica clinica utilizzare teli e camici sterili per la chirurgia. Per determinare quale tipo di teli e camici chirurgici siano più efficaci allo scopo di prevenire le SSI, il GDG ha deciso di valutare i teli in tessuto non tessuto monouso e quelli riutilizzabili, compresi i teli da incisione in plastica adesiva, con o senza proprietà antimicrobiche. I teli e i camici non tessuti e tessuti con proprietà antimicrobiche non sono stati considerati una priorità e non sono state trovate prove rilevanti.

- Le evidenze provenienti da un RCT, un quasi-RCT e due studi osservazionali (qualità moderata per i trial e molto bassa per gli studi osservazionali) dimostrano che l'uso di teli e camici sterili monouso non tessuti non apporta né vantaggi né danni nel ridurre il tasso di SSI rispetto ai materiali sterili riutilizzabili. Considerando la qualità delle prove, il GDG ha unanimemente deciso di suggerire che possono essere utilizzati sia teli e camici sterili usa e getta che teli e camici sterili in tessuto riutilizzabili. La forza di questa raccomandazione è stata considerata condizionale.

- Il GDG ha sottolineato che non vi sono prove sul potenziale effetto del timing o dell'utilità di sostituire i teli o i camici chirurgici nel corso di un'operazione ai fini di prevenire le SSI.

- Evidenze provenienti da un RCT, un quasi-RCT e due studi osservazionali (qualità complessivamente molto bassa sia per i trial che per gli studi osservazionali) mostrano che l'uso di teli da incisione adesivi impregnati di iodofori non apporta né vantaggi né danni rispetto ai teli non adesivi impregnati di iodofori non impregnati nel ridurre i tassi di SSI.

- Evidenze provenienti da due RCT (qualità complessivamente molto bassa), mostrano che l'uso di teli da incisione in plastica adesiva, non impregnati non apporta né vantaggi né danni rispetto ai teli non adesivi nel ridurre i tassi di SSI.

- Considerando la mancanza di evidenze che il telo da incisione in plastica adesiva (con o senza proprietà antimicrobiche) impedisca le SSI, il GDG ha convenuto all'unanimità che non dovrebbe essere utilizzato. Data la qualità delle prove (da moderata a molto bassa), la forza di questa raccomandazione è stata considerata condizionale.

Osservazioni

- Il GDG ha evidenziato che se il materiale dei teli e dei camici chirurgici monouso e riutilizzabili è permeabile ai liquidi, può esporre gli operatori sanitari ai fluidi corporei e rappresenta anche un rischio per i pazienti. In teoria, il materiale dovrebbe essere impermeabile per impedire la migrazione di microrganismi.

- Il GDG ha osservato che sia i teli che i camici monouso in commercio sono disponibili sia in versione permeabile che impermeabile. Il GDG ha identificato possibili danni associati all'utilizzo di teli monouso in quanto le bande adesive possono provocare eruzioni cutanee o eczemi e i dispositivi possono venire dislocati dalla rimozione del telo adesivo al termine della procedura chirurgica (1).

- Per quanto riguarda i teli da incisione in plastica adesiva, il GDG ha identificato le reazioni allergiche possibili danni associato all'utilizzo di teli impregnati di iodofori (2). Il GDG ha inoltre notato che ulteriori possibili danni potrebbero essere rappresentati da pezzi di adesivo rimasti nella ferita.
Background

I teli chirurgici sterili vengono utilizzati durante gli interventi per evitare il contatto con superfici non trattate e mantenere la sterilità delle superfici ambientali, delle attrezzature e dell'ambiente circostante. Allo stesso modo, l’équipe chirurgica indossa camici sterili sopra la divisa da lavaggio per mantenere il campo chirurgico sterile e ridurre il rischio di trasmissione di agenti patogeni sia ai pazienti che al personale (3).

I camici e i teli chirurgici possono essere realizzati sia in materiali riutilizzabili che monouso. Inoltre, vi sono notevoli differenze nel design e nelle prestazioni di queste due grandi categorie, che rispecchiano i necessari compromessi in termini di economia, comfort e livello di protezione richiesto per particolari procedure chirurgiche (4).

Durante le procedure chirurgiche, il rischio di trasmissione di patogeni aumenta se i materiali barriera si bagnano. Di conseguenza, i materiali multiuso o monouso dei teli e degli abiti utilizzati in un intervento chirurgico dovrebbero impedire la penetrazione di liquidi. I materiali riutilizzabili sono generalmente composti da diversi tessuti e/o cotone a trama fitta o altri tessuti eventualmente miscelati con poliestere e/o trattati chimicamente. Questi prodotti devono essere durevoli e garantire protezione anche dopo molti cicli di ricondizionamento. I teli e gli abiti chirurgici monouso sono tipicamente composti da tessuto non tessuto sintetico e/o di origine naturale, a volte trattato chimicamente (3).

I teli chirurgici da incisione in plastica adesiva, semplici o impregnati con un agente antimicrobico (per lo più uno iodoforo), vengono utilizzati sulla pelle del paziente al termine della preparazione chirurgica del sito. La pellicola aderisce alla pelle e il chirurgo incide entrambi (5). Teoricamente questo telo rappresenta una barriera meccanica e/o antimicrobica per prevenire la migrazione dei microrganismi dalla pelle al sito chirurgico (6). Tuttavia, alcuni rapporti hanno mostrato una maggiore ricolonizzazione della pelle dopo la preparazione antisettica sotto i teli adesivi rispetto al loro non impiego (7).

Una revisione Cochrane (8) e i suoi aggiornamenti (5,9) sugli effetti preventivi le SSI dei teli adesivi per incisione hanno dimostrato che non vi sono evidenze sulla loro efficacia. Non sono disponibili raccomandazioni sull’uso di teli e camici chirurgici monouso sterili o riutilizzabili per prevenire le SSI.

Questo tema è affrontato in alcune recenti linee guida, ma con raccomandazioni contrastanti. Le linee guida SHEA/IDSA pubblicate nel 2014 raccomandano che i teli adesivi in plastica, con o senza proprietà antimicrobiche, non siano usati di routine come strategia per prevenire le SSI (10). Tuttavia, nel 2008 la NICE, con sede nel Regno Unito, ha emanato una linea guida che raccomandava l’uso di teli impregnati di iodoforo nei casi in cui fosse richiesto l’impiego di teli di plastica adesiva (11).

Dopo un’analisi approfondita delle risorse disponibili e viste le limitate raccomandazioni di altre linee guida, il GDG ha deciso di effettuare una revisione sistematica per valutare la ricaduta dell’utilizzo di teli e camici chirurgici sterili monouso o riutilizzabili, compresi i teli adesivi in plastica, ai fini della prevenzione delle SSI.

Sintesi delle evidenze

Scopo della revisione delle evidenze (Appendice web 17) era di valutare 3 questioni importanti: 1) se per prevenire le SSI si debbano utilizzare teli e camici sterili monouso o tessuti oppure riutilizzabili; 2) se sostituire i teli durante gli interventi influisca sul rischio di SSI; e (3) se per ridurre il rischio di SSI sia necessario utilizzare teli da incisione sterili monouso adesivi. La popolazione target comprendeva pazienti di tutte le età sottoposti a intervento chirurgico, con presenza di drenaggio postoperatorio. L’outcome primario era il verificarsi di SSI e mortalità correlata.

In totale sono stati identificati 11 studi (1,12-21) relativi a questi argomenti con l’SSI come outcome primario, compresi 4 RCT (12,17,20,21).

Per quanto riguarda il primo quesito, sono stati identificati cinque studi, per un totale di 6.079 pazienti, comprendenti un RCT (12), un quasi-RCT (13) e tre studi osservazionali (1,14,15). Gli studi inclusi riguardavano procedure pulite e pulite-contaminate (ad esempio, procedure di chirurgia generale, cardiotoracica, ortopedica, neurochirurgica e plastica). Quattro studi (1,12,13,15) confrontavano l’uso di teli e camici in tessuto non tessuto monouso sterili rispetto a teli e
Camici sterili di tessuto riutilizzabili. Uno studio (14) confrontava l’uso di teli sterili monouso fenestrati progettati originariamente per la cateterizzazione cardiaca con i drappeggi tradizionali che prevedono l’uso di più teli di tessuto riutilizzabili. C’erano differenze sostanziali tra gli studi nella definizione di SSI, nella tipologia e nei materiali dei teli e dei camici, sia monouso che riutilizzabili.

Dopo un’attenta valutazione degli studi recuperati, è stata eseguita una meta-analisi comprendente gli studi che valutavano teli e camici sterili monouso in tessuto non tessuto vs. quelli riutilizzabili. Evidenze di qualità moderata (RCT) e molto bassa (studi osservazionali) dimostrano che l’uso di teli e camici non monouso sterili in tessuto non tessuto non apporta né vantaggi né danni rispetto agli articoli sterili di stoffa riutilizzabili (OR: 0,85;95% CI: 0,66-1,09 per i RCT; OR: 1,56;95% CI: 0,89-2,72 per gli studi osservazionali).

Per quanto riguarda il secondo quesito, non sono stati individuati studi che valutassero se il cambio dei teli durante gli interventi influisse sul rischio di SSI.

Per quanto riguarda il terzo quesito, sono stati identificati 6 studi (3 RCT (17,20,21), un quasi-RCT (16) e 2 studi osservazionali (18,19)), per un totale di 1.717 pazienti adulti con le SSI come outcome. Gli studi riguardavano procedure chirurgiche pulite e pulite-contaminate (ad esempio: fissazione della frattura dell’anca, appendicectomia aperta, riparazione chirurgica dell’ernia e resezione epatica per carcinoma epatocellulare). La definizione di SSI presentava sostanziali differenze tra gli studi.

Sono state eseguite due distinte meta-analisi per valutare l’uso di teli da incisione sterili monouso adesivi impregnati di antimicrobici vs. teli per incisione sterili non adesivi, e teli da incisione sterili non monouso adesivi impregnati vs. teli da incisione sterili non adesivi. Evidenze di qualità molto bassa suggeriscono che l’uso di teli da incisione sterili monouso adesivi impregnati di antimicrobici non apporta nè beneficio o danno rispetto ai teli sterili non adesivi per ridurre il rischio di SSI (OR: 2,62; 95% CI: 0,68-10,04 per i RCT; OR: 0,49;95% CI: 0,16-1,49 per gli studi osservazionali). Evidenze di bassa qualità provenienti da 2 RCT indicano che l’uso di teli da incisione sterili monouso adesivi impregnati di antimicrobico non influisce sul rischio di SSI (OR: 1,10;95% CI: 0,68-1,78).

Ulteriori fattori considerati nella formulazione delle raccomandazioni

Valori e preferenze

Non è stato reperito alcun studio sui valori e le preferenze dei pazienti riguardo gli interventi trattati nelle raccomandazioni. Il GDG è convinto che la maggior parte dei pazienti non vorrebbe essere coinvolta nella decisione di utilizzare o meno teli e camici chirurgici monouso o riutilizzabili, purché il rischio di SSI sia ridotto al minimo. È stato anche riconosciuto che, sebbene i pazienti possano apprezzare le misure per prevenire le SSI, non desiderano essere esposti al disagio o a possibili danni causati dall’irritazione cutanea o da reazioni allergiche ai teli (ad esempio, cause dall’uso di alcuni teli per incisione monouso adesivi).

Utilizzo delle risorse

Il GDG ha riconosciuto che quando si valutano le implicazioni delle risorse per l’uso di teli e camici chirurgici monouso sterili piuttosto che quelli riutilizzabili devono essere presi in considerazione molti aspetti diversi. I costi comprendono (ma non si limitano a) i costi diretti di acquisto e i costi relativi alla lavanderia e alla sterilizzazione, la manodopera necessaria per il ricondizionamento e lo smaltimento dei rifiuti (22). Due studi (23,24) hanno evidenziato minori costi associati all’uso di teli e camici monouso, mentre un’altra analisi sui costi-benefici (22) ha rilevato costi relativamente più elevati per i teli e i camici monouso sterili rispetto a quelli riutilizzabili. Altri autori hanno riferito che i costi sono simili per le due tipologie (25,26). I risultati eterogenei dei dati disponibili sulle implicazioni delle risorse suggeriscono che i costi di teli e camici chirurgici monouso sono probabilmente simili a quelli del materiale riutilizzabile.

Nel LMIC, la disponibilità di teli e camici monouso e di teli da incisione adesivi può essere limitata e i costi possono rappresentare un onere finanziario elevato, mentre il costo della manodopera per il ricondizionamento degli articoli riutilizzabili può essere meno problematico. Si devono inoltre considerare lo smaltimento e l’impatto ecologico perché l’utilizzo di materiali monouso genera ulteriori rifiuti clinici. Tenendo conto della mancanza di evidenza di qualsiasi vantaggio per la prevenzione delle SSI, il costo aggiuntivo di teli da incisione in plastica adesiva non è giustificato, indipendentemente dalla realtà.
Limiti della ricerca
Il GDG ha sottolineato che i dati disponibili relativi agli interventi oggetto delle raccomandazioni sono limitati e provengono principalmente da Paesi ad alto reddito. Sono necessari ulteriori RCT che studino l’uso di teli e camici chirurgici sterili monouso rispetto a quelli riutilizzabili in termini di prevenzione delle SSI, in particolare nei LMIC. È' fortemente raccomandata un’analisi del rapporto costo-efficacia, specialmente nelle realtà povere di risorse. Ulteriori ricerche dovrebbero concentrarsi anche sui diversi tipi di materiali (compresi i materiali permeabili e impermeabili) e affrontare le problematiche ambientali (acqua, energia, lavanderia, rifiuti, ecc.). Un’ altra priorità di ricerca consiste nell’esaminare se i teli debbano essere lavati, puliti, rinfrescati e ricomposti. Inoltre, è importante sottolineare che il setup del campo chirurgico è fondamentale per la prevenzione delle SSI. A parità di setup, il posizionamento dei teli deve essere adeguato per evitare contatto con il campo operativo.

Riferimenti
4. Selection of surgical gowns and drapes in healthcare facilities. AAMI Technical Information Report TIR No. 11-1994; Arlington (VA); Association for the Advancement of Medical Instrumentation; 1994.

4.17 Utilizzo di dispositivi per la protezione delle ferite

Raccomandazione

Il panel suggerisce di prendere in considerazione l'uso di dispositivi di protezione delle ferite (WP) nelle procedure chirurgiche addominali contaminate e sporche per ridurre il tasso di SSI.

(Raccomandazione condizionale, qualità delle prove molto bassa)

Razionale della raccomandazione

- Nel complesso, prove di qualità molto bassa dimostrano che un dispositivo WP ad anello singolo o doppio ha il vantaggio di ridurre il tasso di SSI rispetto alla normale protezione delle ferite. L'analisi di meta-regression non ha mostrato alcuna forte evidenza di una differenza nell'effetto tra WP ad anello singolo e doppio. Non è stato inoltre dimostrato che l'effetto differisse tra ferita chirurgica pulita-contaminata, contaminata o sporca e altri interventi chirurgici.

- Il GDG ha convenuto di suggerire l'uso di uno dei due dispositivi WP in chirurgia addominale con laparotomia allo scopo di ridurre le SSI. Data la scarsa qualità delle prove, si è ritenuto che la validità della raccomandazione fosse condizionale e il GDG ha proposto di utilizzare la formula "Il panel suggerisce di prendere in considerazione..." per sottolineare la necessità di un'attenta valutazione locale dell'opportunità e delle modalità di applicazione della raccomandazione, in particolare per quanto riguarda la disponibilità di questi dispositivi e i relativi costi.

Osservazioni

- L’insieme delle evidenze raccolte si concentrava su pazienti adulti e non era disponibile alcun studio sulla popolazione pediatrica. Pertanto, l'efficacia di questo intervento non è dimostrata per i pazienti pediatrici.

- Negli studi inclusi sono stati utilizzati due tipi diversi di dispositivi WP disponibili in commercio, ovvero WP a singolo (1-6) e doppio anello (7-11).

- Per quanto riguarda il grado di contaminazione della ferita in chirurgia addominale, 5 studi riguardavano ferite pulite-contaminate (3-7), 5 contaminate (2-6) e 6 sporche (2-6,9).

- Il GDG ha identificato possibili danni associati all'uso di dispositivi WP, in particolare nei pazienti con aderenze addominali. In questi casi, l'inserimento di un dispositivo WP può essere difficile e portare alla necessità di ingrandire l'incisione, con lesioni all'intestino tenue e prolungamento della procedura. Un'altra preoccupazione riguarda lo spazio limitato per accedere al campo chirurgico dopo l'inserimento del WP.

- Sebbene gli studi inclusi non abbiano effettuato valutazioni approfondite, non sono stati segnalati effetti gravi.

- Il GDG ha sottolineato che il chirurgo deve avere dimestichezza con la manipolazione di un dispositivo WP durante il posizionamento, nella fase operatoria e al momento della rimozione per evitare la contaminazione della ferita in questi momenti critici, in particolare quando il WP viene utilizzato in pazienti con un'elevata carica batterica intra addominale, come la peritonite diffusa.

- Il GDG ha sottolineato che si tratta di dispositivi monouso che non devono essere riutilizzati.

Background

Sebbene i chirurghi abbiano prestato sempre più attenzione al controllo della contaminazione delle ferite da incisione durante le procedure chirurgiche, l’SSI è ancora un evento avverso postoperatorio frequente, che mette a repentaglio la sicurezza del paziente e fa aumentare i costi dell’assistenza. Per limitare l’area chirurgica asettica e coprire i lembi della ferita appena creata, vengono comunemente utilizzati teli chirurgici convenzionali. Tuttavia,
questa barriera meccanica non fissa può essere dislocata o potenzialmente contaminata.

Per rafforzare al meglio gli aspetti legati all’isolamento dei lembi delle ferite, sono stati realizzati e messi in commercio dispositivi chirurgici di protezione che, a differenza dei nuovi farmaci, non necessitano di diversi studi controllati prima dell’approvazione da parte degli enti normativi. Questi nuovi dispositivi sono costituiti da una guaina in plastica non adesiva fissata ad un anello di gomma, singolo o doppio, che fissa saldamente la guaina ai margini della ferita.

Il dispositivo è stato ideato per facilitare la retrazione dell’incisione durante l’intervento chirurgico senza necessità di retrattori meccanici e teli aggiuntivi.

In teoria, i WP disponibili in commercio sono destinati a ridurre al minimo la contaminazione del bordo della ferita durante le procedure chirurgiche addominali, sia dall’esterno (chirurgia pulita) che dall’interno della cavità peritoneale (interventi chirurgici puliti-contaminati, contaminati e sporchi). Sebbene già presenti sul mercato, la loro reale utilità e il loro rapporto costo-efficacia giustificano ulteriori analisi basate su prove di efficacia.

Poche organizzazioni hanno pubblicato raccomandazioni sull’uso dei dispositivi WP (Tabella 4.17.1). La NICE - Regno Unito afferma che i dispositivi di protezione dei lembi delle ferite possono ridurre i tassi di SSI dopo un intervento chirurgico addominale aperto, ma non viene data alcuna raccomandazione a causa della mancanza di ulteriori evidenze di alta qualità (12). Tuttavia, le linee guida SHEA/IDSA raccomandano l’uso di WP in plastica impermeabile per interventi chirurgici gastrointestinali e del tratto biliare (13).

Tabella 4.17.1 - Raccomandazioni sull’uso di dispositivi di protezione delle ferite (WP) secondo le linee guida disponibili

<table>
<thead>
<tr>
<th>Linee Guida (anno di pubblicazione)</th>
<th>Raccomandazioni sull’uso di WP</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHEA/IDSA Raccomandazioni per la pratica (2014) (13)</td>
<td>Utilizzare WP in plastica impermeabile per chirurgia gastrointestinal e biliare.</td>
</tr>
<tr>
<td>NICE (Aggiornamento 2013) (12)</td>
<td>I dispositivi di protezione dei lembi delle ferite possono ridurre il tasso di SSI dopo un intervento chirurgico addominale aperto, ma l’attuale carenza di studi di alta qualità rende necessaria una maggiore ricerca.</td>
</tr>
</tbody>
</table>

WP: Wound Protector; SHEA: Society for Healthcare Epidemiology of America; NICE: National Institute for Health and Care Excellence;

A seguito di un’analisi approfondita delle fonti e della solidità delle prove contenute negli orientamenti attuali, il GDG ha deciso di condurre una revisione sistematica per valutare l’efficacia dei dispositivi WP rispetto alla protezione standard dei lembi della ferita e determinare se possono essere utili per prevenire le SSI.

Sintesi delle evidenze

Scopo della revisione (Appendice web 18) era valutare se l’uso di un dispositivo WP sia più efficace nella riduzione del rischio di SSI rispetto alla protezione convenzionale delle ferite, che consiste principalmente nel posizionare salviette umide tra i lembi delle ferite in combinazione con retrattori in acciaio. La popolazione target comprendeva pazienti di tutte le età sottoposti a chirurgia addominale aperta, elettiva o urgente. L’outcome primario era il verificarsi di SSI e mortalità correlata.

Sono stati identificati undici studi che mettevano a confronto l’uso di un dispositivo WP con la tradizionale protezione delle ferite nelle procedure chirurgiche addominali con laparotomia. Riguardavano in totale 2.949 pazienti e comprendevano 10 RCT (1,3-11) e uno studio prospettico controllato (2). Vi sono evidenze di qualità molto bassa che dimostrano il vantaggio di un dispositivo WP ad anello singolo o doppio per la riduzione dei tassi di SSI rispetto alla protezione standard delle ferite (OR: 0,42;95% CI: 0,28-0,62).
Questo effetto positivo è stato osservato sia per i WP a singolo (OR: 0,51;95% CI: 0,34-0,76) che a doppio anello (OR: 0,25;95% CI: 0,13-0,50). Analogamente, l’analisi di meta-regressione non ha mostrato alcuna evidenza forte di una differenza nell’effetto tra l’uno e l’altro (P=0,107). Non è stato inoltre dimostrato che l’effetto differisse tra un intervento chirurgico pulito-contaminato (P=0,244), un intervento contaminato (P=0,305) o sporco (P=0,675) e altri interventi. Il corpus delle evidenze recuperate era incentrato sui pazienti adulti e non era disponibile alcuno studio sulla popolazione pediatrica. La ricerca bibliografica non ha identificato studi che riportino mortalità imputabile a SSI.

Ulteriori fattori considerati nella formulazione delle raccomandazioni

Valori e preferenze
Non è stato individuato alcuno studio sui valori e le preferenze del paziente rispetto a questo intervento. Il GDG è convinto che la maggior parte dei pazienti desideri ricevere questo intervento per ridurre il rischio di SSI. I pazienti preferirebbero anche essere curati da chirurghi che abbiano familiarità con l’uso dei dispositivi WP per ridurre il rischio di complicanze.

Utilizzo delle risorse
Nei LMIC, la disponibilità di dispositivi WP può essere limitata e rappresentare un onere finanziario elevato. Il GDG ha sottolineato che, in contesti con risorse limitate, questo intervento non può essere prioritario rispetto ad altri finalizzati alla riduzione delle SSI. È stata sottolineata la necessità di formare il personale, indipendentemente dal contesto. Pochi studi hanno esaminato il rapporto costo-efficacia dell’intervento. Due piccoli studi hanno rilevato che l’uso dei dispositivi è economicamente conveniente (6,9), mentre uno studio più ampio non lo ha fatto (14).

Limiti della ricerca
Il GDG ha sottolineato che le evidenze disponibili consistono principalmente in piccoli studi di scarsa qualità. Occorrano RCT multicentrici progettati correttamente. L’outcome SSI deve essere definito in base ai criteri CDC e sottospecificato come infezioni superficiali, profonde o a livello di organo/spazio. Per quanto riguarda il livello di contaminazione della ferita e il tasso di SSI incisionali (ad esempio, chirurgia colorettale e laparotomia per peritonite) devono essere segnalate procedure chirurgiche specifiche e pertinenti. I ricercatori dovrebbero considerare la possibilità di confrontare i dispositivi WP a singolo e doppio anello. Gli studi devono segnalare gli eventi avversi connessi all’intervento. Infine, sono necessari anche studi sul rapporto costo-efficacia.

Riferimenti

Raccomandazioni

Il panel ritiene che non vi siano prove sufficienti per raccomandare o meno l’irrigazione salina delle ferite chirurgiche prima della chiusura, al fine di prevenire le SSI.

Il panel suggerisce di prendere in considerazione l’irrigazione della ferita chirurgica con una soluzione acquosa PVP-I prima della chiusura al fine di prevenire le SSI, in particolare in ferite pulite e pulite-contaminate.

Il panel suggerisce che, per prevenire le SSI, la ferita chirurgica non debba essere irrigata con antibiotici prima della chiusura.

(Raccomandazioni condizionali, qualità delle prove bassa)

Razionale delle raccomandazioni

- Sono stati valutati RCT che confrontavano l’irrigazione delle ferite con la non irrigazione oppure l’irrigazione utilizzando soluzioni diverse, con le SSI come outcome. Le evidenze erano disponibili su ferite intraperitoneali, da incisione e sull’irrigazione mediastinica in pazienti sottoposti a varie procedure chirurgiche.
- Tenuto conto della sostanziale eterogeneità dei dati disponibili, il GDG ha deciso di concentrarsi unicamente sull’irrigazione delle ferite chirurgiche. In particolare, il GDG ha convenuto di non prendere in considerazione l’irrigazione intraperitoneale per la formulazione di raccomandazioni, in quanto gli studi identificati descrivevano procedure intra-addominali contaminate e sporche (ad esempio, peritoniti). Pertanto, l’irrigazione delle ferite avrebbe probabilmente rappresentato un intervento terapeutico, piuttosto che una misura profilattica.
- Prove di qualità molto bassa dimostrano che l’irrigazione della ferita chirurgica con soluzione salina non apporta alcun beneficio o danno rispetto alla non irrigazione.
- Evidenze di bassa qualità dimostrano che l’irrigazione della ferita chirurgica con una soluzione acquosa PVP-I è vantaggiosa, con una significativa riduzione del rischio di SSI rispetto all’irrigazione con soluzione salina.
- Evidenze di qualità molto bassa dimostrano che l’irrigazione della ferita chirurgica con soluzioni antibiotiche non apporta alcun beneficio o danno rispetto all’irrigazione con soluzione salina o la mancata irrigazione.
- Il GDG ha convenuto che non vi sono elementi sufficienti per formulare una raccomandazione a favore o contro l’irrigazione salina delle ferite chirurgiche al fine di prevenire le SSI. Il GDG ha anche deciso di suggerire di prendere in considerazione l’irrigazione della ferita chirurgica con una soluzione acquosa PVP-I. L’espressione "prendere in considerazione" è stata proposta per sottolineare la necessità di un processo decisionale, che si concentri in particolare sulle ferite pulite e pulite-contaminate. Infine, il GDG ha convenuto di suggerire che l’irrigazione delle ferite chirurgiche con antibiotici non dovrebbe essere utilizzata per prevenire le SSI. La forza di queste raccomandazioni è condizionale, data la scarsa qualità delle evidenze.

Osservazioni

- Il corpus delle evidenze raccolte si incentrava sui pazienti adulti e non era disponibile alcun studio sulla popolazione pediatrica. Pertanto, l’efficacia dell’irrigazione della ferita chirurgica con una soluzione acquosa PVP-I non è provata per i pazienti pediatrici.
- Le evidenze disponibili da 7 RCT (1-7) (10 stime) hanno dimostrato che l’irrigazione della ferita chirurgica con una soluzione acquosa PVP-I era vantaggiosa per ridurre il rischio di SSI rispetto all’irrigazione con una soluzione salina. La stratificazione delle evidenze rispetto alla contaminazione ha dimostrato che l’effetto era attribuibile all’irrigazione in procedure pulite e pulite-contaminate, classificate come ferite di classe I e II secondo il sistema CDC (8).
- Le evidenze sull’irrigazione di ferite chirurgiche con soluzione acquosa PVP-I provenivano da studi che indagavano PVP-I 10% in chirurgia addominale aperta (ferite di classe I-IV; 3 RCT), PVP-I 1% in...
appendicectomie (ferite di classe II-IV; un RCT) e PVP-I 0,35% in chirurgia ortopedica della colonna vertebrale (ferite di classe I; 3 RCT). Non vi erano evidenze di un effetto dose-risposta per quanto riguarda la concentrazione della soluzione PVP-I utilizzata.

- Due RCT hanno dimostrato che l’irrigazione a pressione impulsa di ferite chirurgiche con una soluzione fisiologica normale riduce il rischio di SSI nelle ferite di classe I e II-III della CDC rispetto alla normale irrigazione con soluzione salina. Un RCT ha dimostrato che l’irrigazione con una normale soluzione salina applicata a pressione sulla ferita chirurgica era più vantaggiosa rispetto alla mancata irrigazione. Ciononostante, il GDG ha ritenuto che non esistessero prove sufficienti per emettere una raccomandazione a favore o contro l’irrigazione con soluzione salina di ferite chirurgiche in quanto il solo RCT che studiava l’irrigazione regolare con soluzione salina non mostrava né benefici né danni rispetto alla non irrigazione. Quando si utilizza l’irrigazione con soluzione salina, può essere preso in considerazione l’uso dell’irrigazione a pressione impulsa.

- I dati disponibili, provenienti da 5 RCT, dimostrano che l’irrigazione antibiotica della ferita chirurgica non apporta né vantaggio né danno nella riduzione delle SSI rispetto alla mancata irrigazione con soluzione salina.

- Dei 3 studi inclusi, 3 RCT (5,9,10) dichiaravano la sterilità del fluido di irrigazione. Gli altri studi non specificavano se il fluido di irrigazione fosse sterile o meno.

- Il GDG ha discusso le reazioni allergiche e gli eventi metabolici avversi come potenziali danni da assorbimento di iodio. Tuttavia, negli studi inclusi non sono stati riportati segni clinici di tossicità dello iodio (5). In caso di allergia nota o presunta allo iodio, se si effettua l’irrigazione della ferita, si devono utilizzare altri prodotti (ad esempio clorexidina). Il PVP-I non deve entrare in contatto con meningi esposte, tessuti neurali, come il cervello o il midollo spinale (11). Sulla base di studi in vitro (12,13), il GDG ha inoltre sollevato preoccupazioni circa i potenziali effetti tossici del PVP-I sui fibroblasti, sul mesotelio e sulla guarigione dei tessuti. Nessun studio ha verificato gli esiti indesiderati dell’irrigazione a pressione pulsata.

- Il GDG ha evidenziato il rischio di insorgenza di resistenza antimicrobica associata all’uso di antibiotici per l’irrigazione delle ferite. Considerato che le evidenze dimostrano che questa procedura non apporta benefici per quanto riguarda la prevenzione delle SSI, il GDG ha sottolineato con forza che questa pratica è associata ad un rischio inutile di contribuire alla resistenza antimicrobica. Inoltre, il GDG ha sottolineato che non esiste una procedura standardizzata per preparare una soluzione antibiotica per l’irrigazione delle ferite e che non vi è certezza del raggiungimento degli obiettivi mediante l’uso di questo metodo.

Background

L’irrigazione intraoperatoria della ferita è il flusso di una soluzione attraverso la superficie di una ferita aperta per ottenerne l’idratazione. E’ diffusamente praticata per aiutare a prevenire le SSI (14-16). Ha lo scopo di agire come detergente fisico rimuovendo i detriti cellulari, i batteri superficiali e i fluidi corporei, con effetto diluente su eventuali contaminazioni e funge da antibatterico locale quando si utilizza un agente antisettico o antibiotico. Fino al 97% dei chirurghi dichiarano di farvi ricorso (14).

Tuttavia, le pratiche variano a seconda della popolazione di pazienti, della superficie di applicazione e delle soluzioni utilizzate. Simili variazioni nella metodologia e nei risultati possono essere osservate negli studi che si occupano degli effetti dell’irrigazione ferita (17). Alcuni studi sperimentali hanno anche sollevato preoccupazioni circa la citotossicità di alcuni additivi batterici, ma la rilevanza clinica di questi risultati non è chiara. Inoltre, la maggior parte della letteratura sull’argomento risale a un’epoca in cui le misure di prevenzione delle infezioni non erano paragonabili alla pratica odierna.

Due linee guida sulla pratica clinica emanate da associazioni professionali e da un’autorità nazionale contengono raccomandazioni contraddittorie in materia di irrigazione intraoperatoria delle ferite (tabella 4.18.1). Le linee guida SHEA/IDSA raccomandano di eseguire il lavaggio antisettico intraoperatorio delle ferite (livello delle evidenze grado II) (18). La linea guida NICE, Regno Unito, afferma che vi sono solo pochi elementi che suggeriscono un vantaggio per l’irrigazione...
intraoperatoria con PVP-I. Tuttavia, anche se l’irrigazione delle ferite con PVP-I può ridurre le SSI, l’uso del PVP-I sulle ferite aperte non è stato autorizzato dalla Food and Drug Administration statunitense (19). La direttiva NICE raccomanda pertanto di non ricorrere all’irrigazione della ferita con lo scopo di ridurre il rischio di SSI (20).

Tabella 4.18.1 - Raccomandazioni sull’irrigazione della ferita secondo le linee guida disponibili

<table>
<thead>
<tr>
<th>Linee Guida (anno di pubblicazione)</th>
<th>Raccomandazioni sull’irrigazione della ferita allo scopo di ridurre le SSI</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHEA/IDSA Raccomandazioni per la pratica (2014) (18)</td>
<td>Eseguire il lavaggio antisettico delle ferite (ad esempio con PVP-I diluito).</td>
</tr>
<tr>
<td>NICE (2008) (20)</td>
<td>Non ricorrere all’irrigazione a ferita per ridurre il rischio di SSI.</td>
</tr>
</tbody>
</table>

SSI: surgical site infection; SHEA: Society for Healthcare Epidemiology of America; NICE: National Institute for Health and Care Excellence.

A seguito di un’approfondita analisi delle fonti e della forza delle evidenze nelle attuali linee guida, i membri del GDG hanno deciso di effettuare una revisione sistematica per valutare i dati disponibili sull’irrigazione delle ferite.

Sintesi delle evidenze

Scopo della revisione delle evidenze (Appendice web 19) era di verificare se l’irrigazione intraoperatoria (con o senza agenti attivi o applicazione di pressione) influisse sull’incidenza di SSI. La popolazione studiata era costituita da pazienti adulti sottoposti a intervento chirurgico. L’outcome primario era il verificarsi di SSI e mortalità correlata. Sono stati inclusi soltanto gli studi che analizzavano l’irrigazione delle ferite (flusso di soluzione attraverso la superficie di una ferita aperta, con o senza additivi attivi). Sono stati esclusi gli studi sull’applicazione topica di antibiotici o antisettici (polveri, gel, spugne, ecc.). Per garantire che le nostre analisi includessero solo evidenze pertinenti all’attuale standard delle misure preventive delle infezioni, sono stati esclusi anche gli studi in cui la SAP non era stata somministrata in modo appropriato (vale a dire nel preoperatorio e per via endovenosa). Inoltre, sono stati esclusi gli studi in cui l’irrigazione delle ferite rappresentava un intervento terapeutico per un’infezione preesistente piuttosto che una misura profilattica.

Sono stati identificati in totale 21 RCT che confrontavano l’irrigazione delle ferite (attiva) con la non irrigazione in pazienti sottoposti a diverse procedure chirurgiche, con le SSI come outcome (Allegato web 19). Nelle evidenze disponibili era rilevabile una sostanziale eterogeneità. Le principali differenze erano legate alla superficie irrigata, alla composizione del fluido utilizzato e alla procedura chirurgica con il relativo livello di contaminazione della ferita. Dopo un’attenta valutazione degli studi inclusi, l’equipe di ricerca e il GDG hanno deciso di limitare la raccomandazione all’irrigazione delle ferite chirurgiche poiché erano disponibili scarse (e eterogenee) evidenze per affrontare altre tipologie di applicazione (ossia l’irrigazione intraperitoneale o mediastinica). In particolare, il GDG ha convenuto di non prendere in considerazione l’irrigazione intraperitoneale per la formulazione di raccomandazioni in quanto gli studi identificati descrivevano procedure intra-addominali contaminate e sporche (ad esempio, peritonite). Pertanto, l’irrigazione delle ferite avrebbe probabilmente rappresentato un intervento terapeutico, piuttosto che una misura profilattica.

Sono state eseguite meta-analisi per valutare i seguenti confronti nell’irrigazione delle ferite chirurgiche: soluzione salina rispetto vs. nessuna irrigazione; irrigazione a siringa sotto pressione con soluzione salina vs. nessuna irrigazione; irrigazione a pressione impulsiva con soluzione salina vs. soluzione salina normale; soluzione PVP-I acquosa vs. soluzione salina; e soluzione antibiotica vs. soluzione salina o nessuna irrigazione.

Uno studio (21) ha confrontato l’irrigazione della ferita chirurgica con normale soluzione salina con la non irrigazione nelle donne sottoposte a taglio...
cesareo (ferita di classe II). Lo studio non ha dimostrato alcuna differenza significativa tra l’irrigazione delle ferite e la non irrigazione sull’incidenza di SSI (OR: 1,09;95% CI: 0,44-2,69; P = 0,85). La qualità delle evidenze era molto bassa a causa del rischio di bias e imprecisioni. Quando sono stati confrontati diversi metodi di irrigazione, evidenze di bassa qualità provenienti da 2 studi (22,23) hanno dimostrato un beneficio significativo per l’irrigazione a pressione impulsa nella prevenzione di SSI rispetto alla normale irrigazione con soluzione salina (OR: 0,30;95% CI: 0,08-0,86; P=0,0003). Evidenze di qualità moderata fornite da un altro studio (24) hanno dimostrato un beneficio significativo per l’irrigazione con una normale soluzione salina applicata con pressione rispetto alla non’ irrigazione (OR: 0,35;95% CI: 0,19-0,65; P=0,0009).

Sette RCT (1-7) mettevano a confronto l’irrigazione della ferita chirurgica con soluzioni acquose di PVP-I in diverse concentrazioni con l’irrigazione con soluzione salina. Le meta-analisi di questi studi hanno dimostrato un beneficio significativo per l’irrigazione con una soluzione acquosa di PVP-I (OR: 0,31;95% CI: 0,13-0,73; P=0,007). Tuttavia, la qualità delle evidenze era bassa a causa del rischio di bias e imprecisioni. La stratificazione per contaminazione della ferita e soluzione di PVP-I ha dimostrato che l’effetto era attribuibile all’irrigazione delle ferite chirurgiche relative a interventi puliti e puliti-contaminati, con PVP-I 10% e PVP-I 0,35%.

Cinque studi (25-29) mettevano a confronto l’irrigazione della ferita chirurgica con una soluzione antibiotica con l’irrigazione con soluzione fisiologica normale o la non irrigazione in ferite di classe I-IV. Una metaanalisi dei 5 RCT non ha dimostrato alcuna differenza significativa tra l’irrigazione antibiotica, la non irrigazione o il solo uso di soluzione salina (OR: 1.16;95% CI: 0.64-2.12; P=0.63). La qualità delle prove era molto bassa a causa del rischio di bias e imprecisioni.

Ulteriori fattori considerati nella formulazione delle raccomandazioni

Valori e preferenze
I valori e le preferenze dei pazienti non sono stati valutati dagli studi, ma il GDG ha sostenuto che la raccomandazione era in linea con i valori e le preferenze della maggior parte dei pazienti.

Utilizzo delle risorse
Il GDG ha sottolineato la mancanza di dati sui costi o sul rapporto costo-efficacia degli interventi che utilizzano l’irrigazione della ferita. Anche se il GDG ha riconosciuto che le soluzioni saline e PVP-I sono solitamente prontamente disponibili nella maggior parte delle realtà, la disponibilità di prodotti sterili può essere limitata nei LMIC. In molte situazioni, la disponibilità e i costi dei dispositivi a pressione, inclusi acquisto, smaltimento dei rifiuti, approvvigionamento, energia e manutenzione, rappresentano un onere finanziario elevato, soprattutto nei LMIC. Inoltre, l’uso di dispositivi a pressione introduce la necessità di DPI, come camici e mascherine facciali.

Limiti della ricerca
Il GDG ha sottolineato che le prove disponibili provengono da vecchi studi condotti principalmente negli anni Ottanta. Ciò rappresenta un grave limite in quanto da allora le misure di prevenzione e controllo delle infezioni sono cambiate in modo significativo. Per valutare e confrontare le pratiche più comunemente utilizzate, sono necessari nuovi RCT ben progettati che utilizzino protocolli standard per la SAP, con particolare attenzione all’agente utilizzato e alla prevenzione delle SSI, in diversi interventi chirurgici. In particolare, non è chiaro quale sia il miglior agente alternativo al PVP-I in caso di evento avverso con questa soluzione. Tali studi dovrebbero essere condotti sia nei Paesi ad alto reddito che nei LMIC. Inoltre, le evidenze devono considerare anche il rapporto costo-efficacia dell’intervento e i danni associati all’irrigazione e agli agenti utilizzati.

Riferimenti

4.19 Terapia profilattica delle ferite a pressione negativa

Raccomandazione

Il panel suggerisce l’uso della terapia profilattica a pressione negativa delle ferite (NPWT) nei pazienti adulti, su incisioni chirurgiche a chiusura primaria ad alto rischio, allo scopo di prevenire le SSI, pur tenendo conto delle risorse.

(Raccomandazione condizionale, qualità delle evidenze bassa)

Razionale della raccomandazione

- Evidenze generali di bassa qualità mostrano che la NPWT contribuisce a ridurre il rischio di SSI in pazienti con ferita chirurgica a chiusura primaria ad alto rischio (per esempio, in caso di scarsa perfusione tessutale causata da danni ai tessuti molli/pelle circostanti, diminuzione del flusso sanguigno, sanguinamento, ematomi, spazio morto, contaminazione intraoperatoria) rispetto alle tradizionali medicazioni postoperatorie.

- Il GDG ha sottolineato che i dispositivi utilizzati per la NPWT sono costosi e potrebbero non essere disponibili in realtà povere di risorse. Pertanto, la definizione della priorità di questo intervento va valutata attentamente, in funzione delle risorse disponibili e di altre misure prioritarie per la prevenzione delle SSI.

- È stata inoltre fatta osservare la mancanza di test che metessero a confronto diversi livelli di pressione negativa o di durata dell’applicazione alla ferita. Inoltre, gli studi non hanno riportato analisi dei sottogruppi per tipo di intervento chirurgico o grado di contaminazione della ferita. Nelle metanalisi stratificate, vi erano poche evidenze che gli effetti differissero per tipo di intervento chirurgico, classe di ferita, livello e durata dell’applicazione. Il GDG ha concluso che l’effetto sembra essere indipendente da questi fattori e che non è possibile formulare raccomandazioni sul livello ottimale di pressione o sulla durata di applicazione.

- A causa della scarsa qualità delle evidenze e degli altri fattori summenzionati, la maggioranza dei membri del GDG ha convenuto di suggerire l’uso della NPWT su incisioni chirurgiche con chiusura primaria in procedure ad alto rischio, ma tenendo conto delle risorse. Un membro del GDG non era d’accordo sulla raccomandazione perché riteneva che le evidenze fossero insufficienti a sostenerla. Il GDG ha deciso che la forza di questa raccomandazione dovesse essere condizionale.

Osservazioni

- Il corpus di evidenze recuperate si concentrava sui pazienti adulti e non era disponibile alcuno studio sulla popolazione pediatrica. Pertanto, questa raccomandazione non è provata per i pazienti pediatrici. Il GDG ha sottolineato che tutti gli RCT sono stati eseguiti in chirurgia pulita (4 in chirurgia ortopedica e traumatologica), tranne uno che comprendeva anche procedure addominali. Al contrario, gli studi osservazionali inclusi sono stati eseguiti su procedure pulite, pulite-contaminate, contaminate e sporche. Poiché i dispositivi NPWT sono comunemente utilizzati in chirurgia addominale, il GDG ha ritenuto che gli studi osservazionali dovessero essere inclusi.

- I dispositivi a pressione negativa sono stati impostati tra 75 e 125 mm Hg con una durata post-operatoria compresa tra 24 ore e 7 giorni. Il gruppo di controllo utilizzava garza asciutta sterile, cerotto nastro, medicazioni occlusive o assorbenti.

- La qualità complessiva delle evidenze era bassa per i RCT, a causa del rischio di bias e imprecisioni, e bassa per gli studi osservazionali.

- Il GDG ha discusso i potenziali meccanismi alla base degli effetti positivi osservati per la NPWT, tra cui una minore deiscenza della ferita, una migliore rimozione dei fluidi e la protezione contro i microrganismi che entrano nella ferita dall’ambiente circostante.

- Il GDG ha identificato la comparsa di vesciche (1) o la macerazione come possibili danni associati all’uso di dispositivi a pressione negativa. Nessun altro evento avverso rilevante è stato individuato sulla base delle evidenze disponibili.
Background
La terapia a pressione negativa è costituita da un sistema chiuso e sigillato collegato ad una pompa da vuoto che mantiene una pressione negativa sul letto della ferita. La NPWT è utilizzata su ferite a chiusura primaria per prevenire le SSI. Anche se la terapia a pressione negativa è stata utilizzata dalla fine degli anni' 90 per diversi scopi, quali fratture ossee aperte (2), ulcere diabetiche (3) e gestione di ferite addominali aperte (4), il suo impiego per la prevenzione delle SSI è relativamente recente. Dopo la prima relazione sul suo impiego in chirurgia ortopedica nel 2006 (5), sono seguiti diversi studi.

Le attuali linee guida per la prevenzione delle SSI non forniscono una raccomandazione sull'uso della NPWT. Solo la NICE, Regno Unito, affronta questo tema in un recente aggiornamento dei suoi orientamenti, ma senza formulare una raccomandazione. Queste linee guida affermano che "la NPWT sembra ridurre i tassi di SSI dopo un trattamento invasivo di traumi agli arti inferiori, ma può essere meno efficace in altri gruppi di pazienti, come quelli con comorbilità multiple. Occorrono ulteriori ricerche"(6).

A seguito della discussione sull'interesse per questo argomento e la mancanza di raccomandazioni in altre linee-guida, il GDG ha deciso di condurre una revisione sistematica per valutare l'efficacia dell'uso della NPWT per prevenire le SSI.

Sintesi delle evidenze
Scopo della revisione delle evidenze (Allegato web 20) era valutare se la NPWT fosse più efficace nel ridurre il rischio di SSI rispetto alle sole medicazioni convenzionali. La popolazione target comprendeva pazienti di tutte le età sottoposti a intervento chirurgico. L'outcome primario era il verificarsi di SSI e mortalità correlata.

Sono stati identificati 19 articoli che descrivono 20 studi che confrontano l'uso della NPWT rispetto alle medicazioni convenzionali delle ferite. Questi riguardavano in totale 6.122 pazienti e comprendevano sei RCT (1,5,7-9) e 14 studi osservazionali (10-23) (RCT, 562; studi osservazionali, 5560). Un articolo (5) descriveva due studi distinti e un altro valutava e analizzava separatamente due diverse popolazioni di pazienti (seno e colon-retto) (20).

A causa dell'eterogeneità tra gli studi selezionati per quanto riguarda il tipo di procedura chirurgica o la classe di contaminazione della ferita, nonché il livello e la durata dell'applicazione della pressione negativa, sono state effettuate ulteriori meta-analisi separate. Si è trattato del tipo di intervento chirurgico, delle ferite classificate come pulite e pulite-contaminate, della durata della NPWT per <5 giorni vs. >5 giorni e del livello di pressione di < 100 mmHg vs. >100 mmHg (Appendice web 20).

Nel complesso, esistono evidenze di scarsa qualità provenienti da RCT e studi osservazionali che la NPWT abbia un vantaggio significativo nel ridurre il rischio di SSI in pazienti con ferita chirurgica a chiusura primaria rispetto alle medicazioni post-operatorie convenzionali (RCT: OR: 0,56;95% CI: 95% CI:0,32-0,96; studi osservazionali: OR: 0,30;95% CI: 0,22-0,42). Quando si è stratificato per tipo di intervento chirurgico (Appendice web 20), le metaanalisi più significative non hanno mostrato alcun beneficio statisticamente significativo nella riduzione del rischio di SSI in chirurgia ortopedica e/o traumatologica. Al contrario, è stato osservato un beneficio significativo nella riduzione dei tassi di SSI con l'uso di NPWT rispetto alle medicazioni convenzionali delle ferite addominali (9 studi osservazionali; OR: 0,31;95% CI: 0,19-0,49) e in cardiochirurgia (2 studi osservazionali; OR: 0,29;95% CI: 0,12-0,69).

Nella stratificazione per classe di contaminazione delle ferite (Allegato web 20), i risultati della metaanalisi più rilevati hanno mostrato un significativo beneficio nel ridurre i tassi di SSI con l'applicazione di NPWT rispetto alle medicazioni convenzionali in chirurgia pulita (8 studi osservazionali; OR: 0,27;95% CI: 0,17-0,42) e pulita-contaminata (8 studi osservazionali; OR: 0,29;95% CI:0,17-0,50).

Se si considerano le diverse durate di NPWT (per < o > 5 giorni) e il livello di pressione (< o > 100 mmHg), il beneficio significativo osservato rimane invariato (Allegato web 20).

Il corpus delle evidenze recuperate si è focalizzava solo su pazienti adulti. La ricerca bibliografica non ha individuato studi che riportassero dati sulla mortalità SSI correlata.
Ulteriori fattori considerati nella formulazione delle raccomandazioni

Valori e preferenze
Non è stato rinvenuto alcuno studio sui valori e le preferenze del paziente rispetto a questo intervento. Il GDG è convinto che la maggior parte dei pazienti vorrebbe ricevere questo trattamento per ridurre il rischio di SSI. Tuttavia, ci sono dubbi circa il comfort e la convenienza in quanto alcuni dispositivi possono essere rumorosi e disturbare il sonno. Il GDG ha sottolineato che l’uso di NPWT può prolungare la degenza ospedaliera, ma ciò potrebbe essere evitato utilizzando apparecchi portatili.

Utilizzo delle risorse
La disponibilità e i costi di questi dispositivi e il potenziale prolungamento del ricovero ospedaliero sono motivo di grande preoccupazione, soprattutto nei LMIC, ma anche nelle strutture ricche di risorse. Il GDG ha osservato che i pazienti sono generalmente più propensi a ricevere una medicazione convenzionale invece della NPWT a causa della mancanza di materiale e di evidenze di economicità. Tuttavia, studi su pazienti ginecologiche hanno dimostrato che l’intervento può essere efficace in termini di costi (24-26). Il GDG ha riconosciuto che potrebbe essere possibile costruire un dispositivo non portatile, di fabbricazione locale a basso costo per i LMIC. È stato inoltre sottolineato che è necessario formare il personale alla manipolazione di questi dispositivi, indipendentemente dalla realtà operativa.

Limiti della ricerca
Il GDG ha sottolineato la necessità di ulteriori RCT ben progettati che studino l’uso del NPWT per la prevenzione delle SSI, soprattutto nei LMIC. La ricerca futura avrà probabilmente un impatto importante sulle nostre certezze riguardo la stima dell’efficacia, compresi quelli sopposti a procedure contaminate e sporche. Sono inoltre necessarie ulteriori ricerche per individuare il livello ottimale di pressione negativa e la durata dell’applicazione.

Riferimenti
11. Blackham AU, Farrah JP, McCoy TP, Schmidt BS, Shen P. Prevention of surgical site

4.20 Uso dei guanti chirurgici

Raccomandazioni

1. Il panel ha deciso di non formulare raccomandazioni a causa della mancanza di elementi per valutare se il doppio guanto o il cambio di guanti durante l’operazione o l’uso di tipi specifici di guanti sia più efficace nel ridurre il rischio di SSI.

Osservazioni

- Per calzare i guanti si intende l’uso di guanti sterili da parte del team chirurgico durante l’intervento.
- Durante l’intervento, non deve mai essere effettuata la decontaminazione dei guanti con alcool o altri prodotti a scopo di riutilizzo.
- I guanti chirurgici sterili (nonché i guanti per esami medici) sono prodotti monouso e non devono essere riutilizzati.
- La ricerca bibliografica non è riuscita a individuare studi pertinenti sui seguenti argomenti di interesse, che avrebbero potuto, alla fine, ispirare una raccomandazione in materia di prevenzione delle SSI: un confronto tra doppio guanto e un solo paio; il cambio intraoperatorio di guanti vs. la non sostituzione; e guanti in lattice vs altri tipi di guanti.
- Il GDG ha sottolineato che la maggior parte dei chirurghi preferisce il doppio guanto perché è plausibile che in caso di perforazione dei guanti possa verificarsi una contaminazione batterica del campo chirurgico. Inoltre, la maggior parte dei chirurghi preferisce indossare doppio guanti per la propria protezione contro le ferite da taglio o punta e/o le infezioni trasmissibili per via ematica. In caso di doppio guanto, è spesso consigliata la sostituzione sistemati c del paio esterno durante gli interventi chirurgici lunghi. Tuttavia, non sono stati forniti elementi a sostegno di tale pratica.

Background

La natura invasiva dell’intervento chirurgico comporta un rischio elevato di trasferimento di agenti patogeni che possono causare infezioni trasmissibili per via ematica nei pazienti e/o nel team chirurgico, così come le SSI. Questo rischio può essere ridotto grazie all’applicazione di barriere protettive, come ad esempio l’uso di guanti chirurgici.

Una revisione Cochrane (1) pubblicata nel 2009 ha valutato se la doppia protezione con i guanti riduce il numero di SSI o di infezioni trasmissibili per via ematica nei pazienti o nell’équipe chirurgica e il numero di perforazioni dei guanti chirurgici più interni. Non è stata riscontrata alcuna prova diretta che la protezione supplementare riduca le SSI dei pazienti. Tuttavia, la revisione non era sufficientemente potente per questo risultato in quanto solo due studi avevano come outcome primario le SSI ed entrambi non riportavano infezioni.

Non sono stati individuati studi con le infezioni trasmesse per via ematica come outcome per i pazienti chirurgici o nell’équipe, correlate all’uso dei guanti. Trentuno RCT avevano come outcome la perforazione dei guanti, il che ha portato al risultato che l’uso di un secondo paio di guanti chirurgici, tripli guanti, guanti esterni a maglia e rivestimenti dei guanti riduce significativamente le perforazioni dei guanti più interni. Poche organizzazioni hanno pubblicato raccomandazioni sull’uso dei guanti (tabella 4.20.1). Le ultime linee guida dell’OMS per la chirurgia sicura pubblicate nel 2009 (2) raccomandano al team operativo di coprire i capelli e indossare camici e guanti sterili durante gli interventi, ma senza alcuna indicazione su singoli o doppio guanti. Le linee guida SHEA/IDSA (3) raccomandano a tutti i membri dell’équipe di calzare guanti doppio e sostituirli quando si osservano perforazioni. Tuttavia, in nessuna linea guida o raccomandazione (2-4) sono state indicate le modalità e la frequenza della sostituzione.
Tabella 4.20.1- Raccomandazioni sull’uso dei guanti secondo le linee guida disponibili

<table>
<thead>
<tr>
<th>Linee Guida</th>
<th>Raccomandazioni sull’uso dei guanti</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linee guida OMS per la Chirurgia Sicura (2009) (2)</td>
<td>L’équipe chirurgica deve coprire i capelli e indossare camici e guanti sterili durante gli interventi.</td>
</tr>
<tr>
<td>SHEA/IDSA Raccomandazioni per la pratica (2014) (3)</td>
<td>Tutti i membri dell’équipe chirurgica devono indossare doppi guanti e cambiarli quando si osserva una perforazione.</td>
</tr>
</tbody>
</table>

SHEA: Society for Healthcare Epidemiology of America; IDSA: Infectious Diseases Society of America.

A seguito di un’analisi approfondita delle fonti e della forza delle evidenze contenute nelle attuali linee guida, il GDG ha deciso di condurre una revisione sistematica per valutare l’efficacia del doppio guanto e del cambio dei guanti in un determinato momento durante l’intervento chirurgico per ridurre le SSI. È stata inoltre affrontata la questione se per ridurre il rischio di SSI sia utile un tipo specifico di guanti.

Sintesi delle evidenze

Scopo della revisione delle evidenze (Appendice web 21) era valutare se il doppio guanto o il cambio di guanti durante l’operazione sia più efficace nella riduzione del rischio di SSI rispetto all’ uso di un solo paio di guanti o senza sostituirli. In un terzo approccio, è stato valutato se un tipo specifico di guanto (ovvero guanti con interno fioccatto, sottoguanti colorati che consentono di individuare visivamente la perforazione, guanti esterni in tessuto/acciaio, guanti tripli) sono più efficaci nel ridurre il rischio di SSI rispetto all’ uso di guanti in lattice. La popolazione target comprendeva pazienti di tutte le età sottoposti a intervento chirurgico. L’outcome primario erano le SSI e mortalità correlata. La contaminazione batterica dei guanti è stata considerata un outcome surrogato.

Sono stati individuati dieci studi, di cui 8 RCT (5-12) e 2 studi osservazionali (13,14). Tra questi ultimi, uno comparava l’efficacia del doppio guanto con l’ uso di un solo paio ed aveva le SSI come outcome (13) e l’altro aveva come outcome l’infezione del fluido cerebrospinale da shunt (14). Sei studi confrontavano il cambio dei guanti durante l’operazione, con la non sostituzione (3 RCT con le SSI come outcome (6,7,10), 2 RCT (5,11) focalizzati sulla contaminazione batterica e un RCT (12) su entrambi). Due RCT con le SSI come outcome confrontavano tipi specifici di guanti quelli in lattice (8,9). I tipi di intervento inclusi sono stati: neurochirurgia, riparazione dell’ernia, taglio cesareo, chirurgia ortopedica e vascolare.

A causa dell’eterogeneità tra gli studi selezionati per quanto riguarda il confronto, la progettazione e gli outcome, non sono state eseguite meta-analisi quantitative.

Mentre uno studio osservazionale (14) ha mostrato che il tasso di infezione del liquido cerebrospinale da shunt era significativamente più elevato nel gruppo a guanti singoli rispetto al gruppo a doppio guanto, un altro (13) non ha rilevato alcuna differenza nei pazienti sottoposti a riparazione dell’ernia. Tre RCT (6,7,10) non hanno mostrato alcuna differenza di rischio per SSI post-cesareo o endometrite quando si confrontava il cambio dei guanti o la rimozione del paio esterno dopo l’estrazione della placenta o del feto rispetto all'indossare i medesimi guanti per l’intera procedura. Un RCT (12) ha riportato una riduzione di SSI superficiali con la sostituzione dei guanti rispetto alla non sostituzione prima del primo contatto con la protesi vascolare nella chirurgia di innesto vascolare sintetico. Tre RCT (5,11,12) e un ulteriore studio osservazionale non comparativo (15) hanno dimostrato che il cambiamento del secondo paio di guanti esterni nel corso dell’intervento riduce significativamente l’incidenza della contaminazione batterica dei guanti. Due RCT (8,9) non hanno mostrato alcuna differenza nelle SSI quando si confrontavano diversi tipi di guanti (doppio guanto) in chirurgia ortopedica.

La qualità metodologica della maggior parte dei progetti selezionati era scarsa, dato che la maggior parte delle sperimentazioni non forniva sufficienti dettagli sui processi di randomizzazione, allocazione,
calcolo della dimensione del campione e del cieco. Le definizioni di SSI variavano da uno studio all’altro. C’erano pochi studi con le SSI come outcome primario. Gli studi inclusi, con la contaminazione batterica come outcome surrogato, mostravano una grande eterogeneità nella definizione, progettazione e misurazione dei risultati. Non c’erano evidenze dirette che dimostrassero il legame tra contaminazione batterica e tassi di SSI.

Il corpus di evidenze recuperate si focalizzava sui pazienti adulti e non era disponibile alcuno studio sulla popolazione pediatrica. La ricerca bibliografica non ha identificato studi che riportassero dati sulla mortalità SSI correlata.

Ulteriori fattori considerati

Utilizzo delle risorse

La disponibilità di guanti chirurgici potrebbe essere limitata nei LMIC, in particolare per le tipologie particolari, come i guanti con interno fiocco, i sottoguanti colorati e i guanti esterni in acciaio. In condizioni di risorse limitate, è necessario verificare l’accettabilità della qualità di guanti, in quanto spesso ai pazienti viene chiesto di acquistarli personalmente e potrebbero essere di qualità inferiore agli standard.

Limiti della ricerca

I membri del GDG hanno sottolineato che un RCT ben progettato che indaghi sull’efficacia del doppio guanto rispetto al singolo sarebbe gradito, soprattutto nei LMIC. Inoltre, sono necessari RCT che valutino se la sostituzione dei guanti durante l’intervento sia più efficace nel ridurre il rischio di SSI rispetto al non cambiarli, inclusa una valutazione dei criteri di sostituzione. Sarebbe interessante anche confrontare diversi tipi di guanti per affrontare la questione del tipo ottimale da utilizzare. Tutti gli studi dovrebbero concentrarsi sulle SSI come outcome primario, definite secondo i criteri CDC e sottospecificate come superficiali, profonde, d’organo o cavità profonda.

Riferimenti

4.21 Sostituzione degli strumenti chirurgici

<table>
<thead>
<tr>
<th>Raccomandazione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Il panel ha deciso di non formulare una raccomandazione in merito per mancanza di evidenze</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Osservazioni</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Gli strumenti chirurgici sono attrezzati o dispositivi che eseguono funzioni quali tagliare, dissezionare, afferrare, trattenere, tirare indietro o suturare. La maggior parte degli strumenti chirurgici sono realizzati in acciaio inossidabile.</td>
</tr>
<tr>
<td>• La ricerca bibliografica non è riuscita a trovare studi relativi al confronto tra la chiusura della ferita utilizzando strumenti chirurgici sterili nuovi e la chiusura con gli strumenti precedentemente usati in chirurgia contaminata allo scopo di prevenire le SSI.</td>
</tr>
<tr>
<td>• Il GDG ritiene che la sostituzione degli strumenti per la chiusura delle ferite in chirurgia contaminata sia pratica comune. Sostituire gli strumenti prima della chiusura della ferita dopo interventi chirurgici contaminati sembra logico, in particolare dopo interventi del colon-rettino o su pazienti operati per peritonite diffusa. Tuttavia, non esistono prove per sostenere questa pratica.</td>
</tr>
</tbody>
</table>

Background

La SSI è causata da microrganismi provenienti o dalla flora della pelle del paziente o dall’ambiente circostante. In entrambi i casi, è possibile che i microrganismi aderiscano agli strumenti chirurgici e pertanto contaminino la ferita chirurgica, in particolare durante le procedure chirurgiche contaminate. Pertanto, è pratica comune sostituire gli strumenti chirurgici utilizzati durante le procedure chirurgiche contaminate con una nuova serie sterile prima della chiusura della ferita.

Le attuali linee guida sulla prevenzione delle SSI non si occupano della sostituzione degli strumenti chirurgici prima della chiusura della ferita e del suo effetto nella prevenzione delle SSI. Il GDG ha deciso di condurre una revisione sistemativa per valutare l’efficacia di questa pratica.

Sintesi delle evidenze

Scopo della revisione (Appendice on-line 22) era di valutare se la chiusura della ferita utilizzando nuovi strumenti chirurgici puliti è più efficace nel ridurre il rischio di SSI rispetto alla chiusura della ferita con gli strumenti chirurgici usati in precedenza. La popolazione target comprendeva pazienti di tutte le età, sottoposti a operazioni chirurgiche contaminate. L’esito primario era il verificarsi di SSI e mortalità correlata.

La ricerca bibliografica non ha identificato studi che abbiano confrontato la chiusura della ferita usando nuovi strumenti chirurgici sterili con la chiusura della ferita con strumenti chirurgici precedentemente usati in chirurgia contaminata.

Due studi, un RCT (1) e uno osservazionale (2), studiavano la sostituzione degli strumenti nella chirurgia colorettale in combinazione con altri interventi eseguiti prima della chiusura della ferita, compreso il cambio di teli, camici e guanti, lavaggio della ferita e ri-frizzamento (non omogenei in termini di interventi). Entrambi gli studi non hanno mostrato alcun beneficio per la prevenzione di SSI.

Limiti della ricerca

Il GDG ha sottolineato che sarebbero ben accolti RCT ben progettati che indaghi sulla sostituzione degli strumenti prima della chiusura delle ferite. L’outcome SSI dovrebbe essere definito in base ai criteri del CDC, gli studi dovrebbero essere condotti sia nei LMIC che in Paesi ad alto reddito e comprendere diverse procedure chirurgiche. Tuttavia, molti membri del GDG hanno sottolineato l’improbabilità che tali trial vengano eseguiti. In futuro, è più probabile che saranno condotti ulteriori studi su interventi combinati.

Riferimenti

4.22 Suture rivestite con antimicrobico

Raccomandazioni

Il panel suggerisce l’uso di suture rivestite con Triclosan allo scopo di ridurre il rischio di SSI, indipendentemente dal tipo di intervento chirurgico.
(Raccomandazione condizionale, qualità delle prove moderata)

Razionale delle raccomandazioni

Nel complesso, evidenze di qualità da bassa a moderata dimostrano che le suture con rivestimenti antimicrobici apportano benefici significativi nella riduzione dei tassi di SSI nei pazienti sottoposti a procedure chirurgiche rispetto alle suture non rivestite. L’effetto sembra essere indipendente dal tipo di sutura, dalla procedura o dalla contaminazione delle ferite. Nell’analisi della meta-regressione, non vi era alcuna prova che l’effetto delle suture rivestite con antimicrobico differisse tra suture ritorte e monofilamento, o tra interventi puliti, di chirurgia cardiaca o addominale e altri interventi chirurgici. Tuttavia, il GDG ha sottolineato che le prove disponibili esaminavano solo suture assorbibili rivestite in Triclosan. Non sono stati identificati studi che verifichero altri agenti antimicrobici. Considerando la bassa o moderata qualità delle prove e la scarsa qualità dei confronti nei sottogruppi dei RCT inclusi nelle analisi di meta-regressione, il GDG ha convenuto che la forza della raccomandazione debba essere condizionale.

Osservazioni

- Il corpus di evidenze recuperate si concentrava principalmente su pazienti adulti e solo uno studio riguardava la popolazione pediatrica. Questa raccomandazione può essere applicata in pediatria, ma si devono verificare le istruzioni del produttore per valutare eventuali controindicazioni.
- Il GDG ha discusso le evidenze disponibili e ha accettato di considerare solo gli studi che confrontavano il medesimo tipo di sutura per evitare confusione per tipo di sutura (monofilamento o ritorto).
- La qualità complessiva delle prove è stata moderata per le RCT a causa del rischio di bias e bassa per gli studi osservazionali. Il GDG ha discusso se considerare o meno la trasversalità per il confronto complessivo tra suture antimicrobiche rivestite e non rivestite. E’ stato concordato che la trasversalità non sia applicabile perché la domanda PICO è molto ampia.
- Gli studi sono stati condotti in paesi ad alto e medio reddito.
- Le procedure chirurgiche incluse riguardavano: colon-retto, addome, seno, testa e collo, arti inferiori, spina, cuore, vasi e altro.
- I tipi di suture investigate negli studi inclusi sono stati: la sutura di polidioxanone rivestita con triclosan vs. la sutura di polidioxanone monofilamento (3 RCTs (1-3)); sutura polyglactin 910 rivestita di triclosan vs. sutura polyglactin 910 ritorta (multifilamento) (7 RCTs (4-10) e 4 studi osservazionali (11-14)); polyglactin 910 e poliglecaprone 25 (entrambe rivestite di Triclosan) vs. polyglactin 910 e poliglecaprone 25 rispettivamente ritorta (polyglactin 910) e monofilamento (poliglecaprone 25) (3 RCTs (15-17) e uno studio osservazionale (18)).
- Negli studi considerati, all’uso di suture rivestite con antimicrobico non si associavano eventi avversi. Tuttavia, il GDG ha sottolineato che esistono evidenze limitate che il Triclosan possa avere effetti negativi sulla guarigione della ferita (19) o causare allergia da contatto (20). Anche se lo sviluppo di farmaco-resistenza è citato come preoccupazione, l’assorbimento quotidiano di Triclosan dai prodotti di consumo (ad esempio, sapone per le mani commercialmente disponibile) è superiore a quello di una singola sutura rivestita (21-23).
Background

Il materiale di suture chirurgico viene utilizzato per avvicinare adeguatamente i lembi della ferita e quindi è in contatto diretto con la ferita stessa. Per prevenire la colonizzazione microbica del suddetto materiale in caso di incisioni operatorie, sono stati sviluppati filamenti con attività antibatterica. Il Triclosan (5-cloro-2- [2,4-Diclorofenossi] fenolo) è un agente battericida ad ampio spettro che viene utilizzato da più di 40 anni in vari prodotti commerciali, quali i dentifrici e i saponi. Concentrazioni più elevate di Triclosan funzionano come battericida, attaccando diverse strutture del citoplasma batterico e la membrana cellulare (24). A concentrazioni più basse, il Triclosan agisce come batteriostatico, inibendo la enoil-ACP reduttasi, un prodotto del gene Fab I e di conseguenza la sintesi degli acidi grassi (25, 26).

Diversi studi hanno dimostrato che l'uso di suture rivestite di Triclosan porta ad una riduzione del numero dei batteri in vitro e, in studi clinici e su animali, anche delle infezioni delle ferite (27-29).

Di nota, che questo effetto non si limita a qualche particolare tessuto o organo (23). Oltre al Triclosan, stanno diventando disponibili parecchi nuovi rivestimenti antimicrobici (30, 31), ma non ci sono ancora segnalazioni di studi clinici che confrontano l'efficacia delle nuove suture antibatteriche rispetto a quelle non rivestite. Polyglactin 910 rivestita con Triclosan, Polidioxanone rivestita con Triclosan e Poliglecaprone 25 rivestito sono suture con proprietà antimicrobiche commercialmente disponibili. Tra le suture non rivestite più comunemente utilizzate vi sono la Polyglactin 910, Polidioxanone, poliglecaprone 25, e le suture realizzate in acido poliglicolico e poligliconato.

Poche organizzazioni hanno stilato raccomandazioni per quanto riguarda l'uso di suture rivestite con antimicrobico (Tabella 4.22.1). La NICE, basata sul Regno Unito, suggerisce che le suture rivestite con antimicrobico possono ridurre il rischio di SSI rispetto a quelle non rivestite, anche se questo effetto può essere specifico per particolari tipi di chirurgia, quali le procedure addominali (32). Le linee guida SHEA / IDSA indica che le suture impregnate di antistettici non dovrebbero essere utilizzate in maniera regolare come strategia per prevenire le SSI (33).

Tabella 4.22.1- Raccomandazioni sull’utilizzo di suture rivestite con antimicrobico secondo le linee guida disponibili

<table>
<thead>
<tr>
<th>Linee Guida (anno di pubblicazione)</th>
<th>Raccomandazioni sull’utilizzo di suture rivestite</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHEA/IDSA (2014) (33)</td>
<td>Non utilizzare routinariamente suture impregnate con antistettico come strategia per prevenire le SSI.</td>
</tr>
<tr>
<td>NICE (2008) (11)</td>
<td>Le suture rivestite con antimicrobici possono ridurre il rischio SSI rispetto alle suture non rivestite, anche se questo effetto può essere specifico per particolari tipi di chirurgia, come l’addominale.</td>
</tr>
</tbody>
</table>

SHEA: Society for Healthcare Epidemiology of America; IDSA: Infectious Diseases Society of America; NICE: National Institute for Health and Care Excellence; SSI: surgical site infection.

A seguito di un’analisi approfondita delle fonti e della potenza delle evidenze negli attuali orientamenti, il GDG ha deciso di condurre una revisione sistematica per valutare se l’uso di suture rivestite con antimicrobico possa essere positivo nel prevenire le SSI dei pazienti chirurgici.

Sintesi delle evidenze

Scopo della revisione (Appendice on-line 23) era valutare se l’uso di suture rivestite con antimicrobico è più efficace nella riduzione del rischio di SSI rispetto all’uso di suture non rivestite. La popolazione target comprendeva pazienti di tutte le età sottoposti a una procedura chirurgica. L’outcome primario era il verificarsi di SSI e mortalità correlata. Sono stati reperiti diietti studi (13 RCTs (1-10, 15-17) e cinque studi di coorte (11-14, 18) per un totale di 7458 pazienti (RCT, 5346, studi osservazionali, 2112) che confrontavano l’uso dei due tipi di sutura.

Sette studi hanno confrontato l’efficacia delle suture rivestite di antimicrobico rispetto alle suture non rivestite in ferite miste (5 RCT (2-5, 8) e 2 studi...
osservazionali (12, 14)). Altri 7 studi (5 RCT (6, 10, 15-17) e 2 studi osservazionali (11, 18)) hanno fatto lo stesso confronto su ferite pulite, soprattutto cardiache e di chirurgia del cancro della mammella e 4 studi (3 RCT (1, 7, 9) e uno studio osservazionale (13) riguardavano ferite pulite-contaminate in chirurgia addominale.

Data l’eterogeneità degli studi selezionati riguardo al tipo di sutura utilizzata, al tipo di procedura chirurgica e alla classe di contaminazione della ferita, sono state eseguite ulteriori meta-analisi separate per suture di Polidioxanone rivestito con Triclosan vs. suture di Polidioxanone; Polyglactin 910 rivestita con Triclosan vs. Polyglactin 910; Polyglactin 910 e Poliglecaprone 25 (entrambi rivestiti) vs. Polyglactin 910 e Poliglecaprone 25, così come su ferite pulite, pulite-contaminate e miste (Appendice on-line 23).

Nel complesso, ci sono evidenze di qualità da moderata a bassa che le suture rivestite con antimicrobico apportino benefici significativi nella riduzione dei tassi di SSI (OR: 0,62; 95% CI: 0,44-0,88 per RCT; OR: 0,58; 95% CI: 0,37-0,92 per studi osservazionali).

Si notino alcuni limiti degli studi considerati. La qualità dei RCT inclusi era da moderata a bassa. Infatti, alcuni studi hanno avuto un rischio non chiaro o alto di cieco per i partecipanti, gli operatori e i valutatori dei risultati, e/o un rischio elevato di incompletezza dei dati rispetto agli esiti. Inoltre, alcuni studi hanno ricevuto sponsorizzazioni industriali o presentavano conflitti di interesse con una società commerciale.

Ulteriori fattori considerati nella formulazione delle raccomandazioni

Valori e preferenze
Per quanto riguarda questo intervento, non è stato reperito alcuno studio sui valori e le preferenze dei pazienti. Il GDG è convinto che la maggior parte di loro sia propenso a ricevere questo intervento al fine di ridurre il rischio di SSI, ma i pazienti devono essere informati circa il rischio di allergia, basso e non confermato, al Triclosan. Il GDG ha sottolineato che i pazienti vorrebbero essere parte del processo, attraverso il coinvolgimento e l’informazione.

Utilizzo delle risorse
Il GDG ha sottolineato che le suture sono generalmente costose e che nei LMIC la disponibilità di suture rivestite con antimicrobico è limitata. Nelle realtà in cui i pazienti devono pagare il materiale stesso, un aumento dei costi rappresenterebbe un ulteriore onere finanziario personale. Al momento della formulazione di questa raccomandazione, il GDG ha osservato che i produttori vendevano le il suture antimicrobiche e quelle non rivestite approssimativamente allo stesso prezzo, ma il GDG non è a conoscenza della futura politica dei prezzi dei produttori. L’uso di suture rivestite potrebbe aumentare il costo per paziente, ma potrebbe ridurre la durata media del ricovero ospedaliero e dei potenziali costi al sistema sanitario grazie all’eliminazione del rischio di SSI (5, 8, 34).

Il corpus delle evidenze raccolte riguardava prevalentemente pazienti adulti, solo uno studio (4) una popolazione pediatrica. La ricerca bibliografica non ha identificato studi condotti sulla mortalità SSI-correlata.

Limiti della ricerca
Il GDG ha evidenziato la limitatezza delle evidenze disponibili in alcune aree e la necessità di ulteriori ricerche sugli effetti delle suture rivestite con antimicrobico nella riduzione dei tassi di SSI. In particolare, dovrebbero essere condotti studi nei LMIC, riguardanti diversi tipi di procedure chirurgiche. I confronti tra suture rivestite e non dovrebbero essere eseguiti sullo stesso tipo di materiale di sutura, compresi i fili non assorbibili.
In particolare, sarebbero ben accetti confronti con un agente antimicrobico alternativo al Triclosan. Sono necessarie ulteriori ricerche per studiare l'efficacia delle suture rivestite nella popolazione pediatrica e in vari tipi di realtà. Tutti gli studi dovrebbero essere progettati come RCT con le SSI quale outcome definito in base ai criteri CDC e classificate come superfICIALI, profonde e d'organo o cavità profonda. Gli eventi avversi connessi agli interventi devono essere segnalati chiaramente, compresa la necessità di valutare il rischio di allergia. È importante sottolineare che si devono monitorare le possibili insorgenze di antibiotico-resistenza all'agente utilizzato. In più, sono necessari studi sul costo-beneficio. Da notare che la ricerca che studia l'efficacia delle suture antimicrobiche dovrebbe essere finanziata in modo indipendente, con un'influenza limitata della sponsorizzazione industriale.

Riferimenti

15. Thimour-Bergstrom L, Roman-Emmanuel C, Schersten H, Friberg O, Gudbjartsson T, Jeppsson A. Triclosan-coated sutures reduce surgical site infection after open vein harvesting in coronary artery bypass grafting patients: a randomized controlled

4.23 Sistemi di areazione a flusso laminare nel contesto della ventilazione della sala operatoria

<table>
<thead>
<tr>
<th>Raccomandazione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Il panel suggerisce di non utilizzare i sistemi di ventilazione a flusso laminare allo scopo di prevenire le SSI per i pazienti sottoposti ad artroplastica totale. (Raccomandazione condizionale, qualità delle prove da bassa a molto bassa)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Razionale della raccomandazione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evidenze di scarsa qualità dimostrano che sia nell’artroplastica totale dell’anca (THA) che del ginocchio (TKA), la ventilazione laminare non apporta alcun vantaggio rispetto alla ventilazione convenzionale nella riduzione dei tassi di SSI. Per le THA, la ventilazione convenzionale ha avuto un effetto positivo non significativo nel ridurre il rischio di SSI, pertanto, il GDG ha convenuto all’unanimità che i sistemi di ventilazione a flusso laminare non debbano essere utilizzati come misura preventiva per ridurre il rischio di SSI per la chirurgia artroplastica totale. La forza di questa raccomandazione è stata considerata condizionale, considerata la scarsa qualità delle evidenze a supporto. Per altri tipi di procedure, le evidenze disponibili consistevano in singoli studi osservazionali e il GDG ha ritenuto che questo corpus fosse insufficiente a supportare una raccomandazione specifica. Inoltre, la ventilazione a flusso laminare è stata di interesse soprattutto come misura preventiva in chirurgia artroplastica ortopedica.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Osservazioni</th>
</tr>
</thead>
<tbody>
<tr>
<td>- I sistemi di ventilazione convenzionali introducono aria in sala operatoria con un flusso misto o turbolento. Questi sistemi mirano ad omogeneizzare l'aria fresca con l'aria, le sostanze nebulizzate e le particelle all'interno della sala. Ciò porta ad una diluizione accelerata del volume d'aria e ad un movimento irregolare delle particelle. I sistemi di ventilazione turbolenti convenzionali vengono utilizzati per qualsiasi tipo di intervento chirurgico. I sistemi a flusso laminare sono frequentemente utilizzati in un ambiente in cui la contaminazione con particelle è un evento avverso serio, ad esempio, in chirurgia ortopedica. L'obiettivo del flusso d'aria laminare è quello di introdurre l'aria fresca in modo unidirezionale, a velocità costante e flussi all'incirca paralleli per creare una zona dalla quale vengano allontanate l'aria, le sostanze nebulizzate e le particelle presenti all'interno della sala.</td>
</tr>
<tr>
<td>- Non sono stati individuati possibili danni associati alla raccomandazione. Tuttavia, l'effetto raffreddante dell'aria fresca proveniente da un sistema a flusso laminare sulla ferita chirurgica e sul paziente può portare ad un abbassamento della temperatura del tessuto intraoperatorio della ferita chirurgica o a ipotermia sistemica se la temperatura non viene monitorata durante l'intervento (1).</td>
</tr>
<tr>
<td>- Il GDG ha sottolineato che la maggior parte delle informazioni provengono da banche dati o registri nazionali di sorveglianza. Sebbene questi studi siano effettuati su campioni di grandi dimensioni, non sono progettati appositamente per questo confronto. Infatti, i confronti sono avvenuti tra ospedali che utilizzano il flusso laminare e quelli con ventilazione convenzionale, invece che all'interno dello stesso ospedale. Ciò può portare ad una grande confusione data da fattori quali la differenza nella dimensione ospedaliero/chirurgica, le caratteristiche dei pazienti ricoverati e/o la portata dell'attuazione di altre misure di prevenzione delle SSI.</td>
</tr>
<tr>
<td>- La revisione sistematica ha esaminato anche l'uso di ventilatori o dispositivi di raffreddamento e ventilazione naturale in sala operatoria rispetto alla ventilazione convenzionale per quanto riguarda il rischio di SSI. La ricerca bibliografica non ha però identificato studi che hanno valutato questi interventi. Uno studio osservazionale (2) che ha valutato la ventilazione naturale in sala operatoria rispetto alla convenzionale per interventi THA e TKA non ha rilevato differenze nel rischio di SSI.</td>
</tr>
<tr>
<td>- Date le evidenze molto limitate sulla ventilazione naturale e sui ventilatori/sistemi di raffreddamento, la GDG ha deciso di non elaborare una raccomandazione su questi argomenti. Tuttavia, è consigliabile garantire una corretta ventilazione della sala operatoria e un'adeguata manutenzione dei componenti del sistema di ventilazione installato (3).</td>
</tr>
</tbody>
</table>
Background

Il sistema di ventilazione della sala operatoria è progettato per garantire alcune funzioni, in primis per creare comfort termico per il paziente e il personale e per mantenere costante la qualità dell’aria eliminando sostanze nebulizzate e particelle all’interno della sala. Serve anche a mantenere requisiti certi di pressione dell’aria tra camere comunicanti. In sala operatoria sono richiesti sistemi di ventilazione speciali che forniscono aria filtrata a pressione positiva. Idealmente, per diluire i microrganismi generati in sala operatoria ed escluderne l’ingresso da aree circostanti sono necessari circa 20 ricambi d’aria all’ora (3).

Esistono diversi sistemi utilizzati per ventilare una sala operatoria. La ventilazione naturale è il metodo basilare e si riferisce al flusso d’aria generato da forze naturali. L’OMS ne fornisce la seguente definizione (4): “uso di forze naturali per introdurre e distribuire l’aria esterna in o fuori un edificio. Queste forze naturali possono essere la pressione del vento o la pressione generata dalla differenza di densità tra aria esterna e interna”. Sfruttare la ventilazione naturale può essere una soluzione adatta a realtà con risorse limitate e viene considerata dall’OMS come un’opzione per la prevenzione e il controllo delle infezioni. Tuttavia, non esistono prove disponibili per il suo utilizzo nelle sale operatorie (4).

Un sistema di ventilazione ben progettato che sfrutta i movimenti naturali dell’aria è ancora lontano da raggiungere e si limita ad una climatizzazione circoscritta (4). Se la ventilazione naturale non è sufficiente per adempiere alle funzioni desiderate di cui sopra, vengono comunemente installati ventilatori e dispositivi di raffreddamento o riscaldamento, soprattutto per mantenere la temperatura dell’aria e l’umidità a livelli gradevoli. I limiti di questi sistemi potrebbero essere un numero di ricambi d’aria per ora inadeguato, il controllo della direzione del flusso d’aria in sala operatoria e la diffusione di particelle e polvere, risultando così insufficiente l’eliminazione di sostanze nebulizzate e particelle.

Nella maggior parte dei LMIC, le sale operatorie non dispongono di un sistema completo di ventilazione meccanica e il condizionamento dell’aria utilizzato è un dispositivo di raffreddamento a ricircolo. Se si utilizza un tale sistema, questo deve essere montato a parete e non a pavimento, e deve essere manutenuto regolarmente, compresi il controllo, la pulizia e la sostituzione dei filtri. L’uso di ventilatori in sala operatoria è sconsigliato e dovrebbero essere utilizzati solo come ultima risorsa in mancanza di circolazione d’aria che influisca sulla performance del chirurgo. Tutti i ventilatori in sala operatoria o in quella preparatoria devono essere puliti regolarmente.

In ambienti ricchi di risorse, nelle sale operatorie sono solitamente installati sistemi di ventilazione convenzionali che introducono l’aria con flusso misto o turbolento. Questi sistemi mirano ad omogeneizzare l’aria fresca con l’aria, le sostanze nebulizzate e le particelle presenti all’interno della sala. Questo porta ad una diluizione accelerata del volume dell’aria e a un movimento irregolare delle particelle. I sistemi di ventilazione turbulenti convenzionali sono utilizzati per tutti i tipi di intervento chirurgico. I sistemi a flusso d’aria laminare sono spesso utilizzati in un ambiente dove la contaminazione da particelle è un evento particolarmente avverso, ad esempio, nella chirurgia impiantistica ortopedica. L’obiettivo dell’introdurre aria fresca unidirezionalmente, a velocità costante e a flussi approssimativamente paralleli è quello di creare una zona dove l’aria, le sostanze nebulizzate e le particelle presenti nella sala vengono allontanate. I limiti di questo principio sono tutte le forze che interferiscono con il flusso d’aria parallelo.

In molti Paesi, nel sistema di ventilazione delle sale operatorie è obbligatorio per legge l’uso di filtri antiparticolato ad elevata efficienza (efficacia almeno al 99,97% nel rimuovere le particelle ≥0,3 μm di diametro). Da notare che deve essere prestata la massima attenzione alla manutenzione di qualsiasi tipo di sistema di ventilazione e dei suoi componenti. Il sistema di ventilazione della sala operatoria deve essere regolarmente controllato e i filtri sostituiti (la necessità di questo intervento è valutata monitorando il differenziale di pressione attraverso i filtri) in base alle procedure locali di funzionamento standard, che devono basarsi sulle istruzioni del costruttore e sulle linee-guida internazionali.

Una revisione sistematica (5) pubblicata nel 2012 sull’influenza del flusso d’aria laminare nelle infezioni del giunto protesico ha rilevato che la ventilazione laminare può rappresentare un fattore di rischio per lo sviluppo di una SSI grave.

Alcune linee guida contengono raccomandazioni per quanto riguarda i sistemi di ventilazione in sala operatoria (Tabella 4.23.1), mentre diverse altre linee-guida per la prevenzione delle SSI non trattano l’argomento. Le raccomandazioni vanno da un consiglio tecnico per una adeguata movimentazione dell’aria in sala operatoria (6) al lasciare la questione...
irrisolta (3). Tali raccomandazioni, però, non si basano su revisioni sistematiche della letteratura, su metanalisi o su una rigorosa valutazione della qualità delle evidenze disponibili.

A seguito di un’analisi approfondita delle fonti e della potenza delle evidenze nella attuali linee-guida, il GDG ha deciso di condurre una verifica sistematica per valutare l’efficacia dei sistemi di ventilazione in sala operatoria per la prevenzione delle SSI.

Scopo della revisione delle evidenze (Appendice online 24) era di valutare se il flusso d’aria laminare fosse un sistema di ventilazione più efficace nel ridurre il rischio di SSI rispetto ad un sistema di ventilazione convenzionale. La revisione ha inoltre valutato se i ventilatori o i dispositivi di raffreddamento e la ventilazione naturale fossero alternative accettabili alla ventilazione convenzionale per la prevenzione delle SSI. La popolazione target erano pazienti di tutte le età sottoposti ad intervento chirurgico. L’outcome primario era l'occorrenza di SSI e mortalità correlata. Le definizioni che negli studi considerati si riferivano a SSI gravi, infezione periprotesica e infezioni profonde che richiedevano revisione sono stati considerati come SSI profonde.

Sono stati identificati dodici studi osservazionali (9-20) che confrontavano il flusso laminare con la ventilazione convenzionale. Non sono stati identificati RCT. La maggior parte dei dati sono provenivano da sistemi e registri di sorveglianza nazionali. Da notare che, sebbene questi studi fossero stati effettuati su campioni di grandi dimensioni, non erano progettati appositamente per questo confronto. La maggior parte degli studi erano focalizzati su interventi di artroplastica completa del femore (33.0146 procedure) e del ginocchio (134.368 procedure). Per altre tipologie chirurgiche erano disponibili solo studi singoli (appendicectomia 8), colecistectomia (8), chirurgia del colon (8), ernioraffia (8), gastrico (10) e chirurgia vascolare (7)). La popolazione studiata era prevalentemente adulta. Secondo studi selezionati, sono stati valutati i seguenti confronti.

1. Ventilazione del flusso d’aria laminare vs. ventilazione convenzionale
 a) In THA
 b) In TKA.

Evidenze di qualità molto bassa dimostrano che la ventilazione al flusso d’aria laminare non apporta alcun vantaggio se confrontata con la ventilazione convenzionale nel ridurre i tassi di SSI in THA (OR: 1,29; 95% Cl: 0,98-1,71) o TKA (OR: 1,08; 95% Cl: 0,77-1,52).

Negli studi osservazionali singoli, si è riscontrato che al flusso laminare si associava un aumento complessivo del rischio di SSI nei pazienti sottoposti ad appendicectomia; nessuna associazione significativa è stata rilevata per chirurgia del colon, colecistectomia e ernioraffia. Per la chirurgia gastrica e vascolare aperta, si è rilevato che l'assenza del flusso laminare aumentava il rischio di SSI.

La ricerca non ha identificato dati che valutassero l’uso di ventilatori o dispositivi di raffreddamento in sala operatoria e il loro impatto sul rischio di SSI confrontato con un sistema di ventilazione normale/convenzionale. Uno studio osservazionale (2), che ha valutato la ventilazione naturale in sala operatoria rispetto alla ventilazione convenzionale e il suo impatto sul rischio di SSI post THA e TKA, non ha rilevato differenze. La ricerca bibliografica non ha identificato studi sulla mortalità correlata alle SSI.
Ulteriori fattori considerati nella formulazione delle raccomandazioni

Valori e preferenze

Per quanto riguarda questo intervento, non è stato reperito alcun studio sui valori e le preferenze dei pazienti. Il GDG è convinto che i valori e le preferenze tipici della popolazione target riguardo l’outcome non favorirebbero l’intervento e che pertanto i pazienti approverebbero la raccomandazione. Il GDG ritiene anche che i pazienti non abbiano un parere sul sistema di ventilazione ospedaliera, purché vengano presi in considerazione altri aspetti per prevenire le infezioni.

Utilizzo delle risorse

Le analisi costo-beneficio hanno riscontrato che la ventilazione a flusso laminare è più costosa rispetto alla convenzionale. Uno studio italiano (18) ha valutato un aumento del 24% nei costi di installazione e del 36% in quelli di gestione annuale. Uno studio modello di calcolo australiano (19) ha valutato costi aggiuntivi di AUD$ 4,59 milioni per 30.000 THA eseguite. Costi aggiuntivi di €. 3,24 per procedura (1000 procedure all’anno per 15 anni) sono stati calcolati da un gruppo di studio tedesco (20). Il GDG ha sottolineato che l’installazione di sistemi a flusso d’aria laminare è difficile nelle realtà a basso reddito per mancanza di risorse, di competenze tecniche e di infrastrutture.

Limiti della ricerca

Il GDG ha evidenziato la scarsa qualità delle evidenze disponibili sul tema e la necessità di ulteriori ricerche sugli effetti del flusso laminare nella riduzione del tasso di SSI, in particolare studi clinici ben progettati nel campo della chirurgia endoprotetica. Il GDG ha riconosciuto che gli studi clinici controllati randomizzati potrebbero non essere una scelta ragionevole in quanto potrebbero essere problematici in quanto sarebbe quasi impossibile il controllo dei fattori confondenti, come diversi chirurghi che operano nella stessa sala operatoria.

Le banche dati nazionali possono fornire le migliori informazioni sostenibili, ma l’aderenza alle definizioni internazionali e ulteriori informazioni circa i confondenti devono provenire da sistemi di sorveglianza e registri nazionali. La mancanza di evidenze sull’impatto dei ventilatori/dispositivi di raffreddamento e della ventilazione naturale sul tasso di SSI rispetto alla ventilazione convenzionale sottolinea la necessità di ulteriori ricerche in questo campo, per valutare se questi sistemi possano essere un’alternativa per i Paesi con risorse limitate, se correttamente progettati e manutenuti.

Riferimenti

MISURE POST-OPERATORIE

4.24 Prolungamento della profilassi antibiotica

<table>
<thead>
<tr>
<th>Raccomandazione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Il panel sconsiglia il prolungamento della profilassi antibiotica dopo l’intervento chirurgico allo scopo di prevenire le SSI. (Raccomandazione forte, qualità delle prove moderata)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Razionale della raccomandazione</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Prove di qualità moderata derivanti da un elevato numero di RCT (44 studi inclusi nella metanalisi complessiva) dimostrano che profilassi antibiotica postoperatoria non apporta alcun vantaggio nel ridurre le SSI dopo l’intervento chirurgico rispetto alla somministrazione singola. Esiste tuttavia qualche evidenza (qualità bassa o molto bassa) che la somministrazione post-operatoria prolungata di antibiotici possa essere utile a ridurre il rischio di SSI in cardiochirurgia, chirurgia vascolare e ortognatica rispetto alla profilassi a dose singola. Considerando queste evidenze limitate e di qualità bassa o molto bassa per supportare il prolungamento della profilassi per le procedure sopra menzionate, nonché il possibile danno associato alla durata prolungata della somministrazione di antibiotici, il GDG ha ritenuto di sconsigliare il prolungamento della somministrazione di antibiotici dopo il completamento dell’operazione allo scopo di prevenire le SSI.</td>
</tr>
<tr>
<td>• Considerando i possibili eventi avversi, il rischio di generare AMR legato al prolungamento della terapia e l’elevato numero di studi disponibili di moderata qualità che non dimostrano alcun beneficio, la forza della raccomandazione è stato deciso essere forte.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Osservazioni</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Negli studi considerati, per “dose singola” si intende di solito a una dose preoperatoria con o senza richiamo intraoperatorio, a seconda della durata dell’intervento e dell’emivita del farmaco. Gli studi hanno sempre confrontato lo stesso agente antibiotico nella stessa dose per somministrazione.</td>
</tr>
<tr>
<td>• Le linee guida della Società Americana dei Farmacisti del Sistema Sanitario (1) raccomandano come necessario un richiamo intraoperatorio se la durata della procedura supera di 2 volte l’emivita del farmaco o se vi è eccessiva perdita di sangue durante l’intervento. Se il vantaggio di questo approccio appare ragionevole dal punto di vista farmacocinetico, gli studi riesaminati non hanno affrontato la durata delle procedure chirurgiche o la ri-somministrazione in relazione alle SSI nei protocolli di profilassi antibiotica standard. Non si poteva quindi elaborare una raccomandazione sul vantaggio o sul danno di questo approccio.</td>
</tr>
<tr>
<td>• Per la cardiochirurgia (2 RCT (2, 3)) e la chirurgia ortognatica (3 RCT (4-6)), si è riscontrata qualche evidenza che prolungare la somministrazione antibiotica dopo il completamento dell’operazione possa essere utile per ridurre il rischio di SSI rispetto alla profilassi a singola dose. Al contrario, altri RCT (7-13) non hanno mostrato alcun vantaggio in queste tipologie di intervento chirurgico nel prolungare la profilassi antibiotica oltre le 24 ore rispetto alla profilassi fino a 24 ore.</td>
</tr>
<tr>
<td>• Nell’ambito della chirurgia vascolare si è rilevata una qualche evidenza da un RCT (14) che il prolungare la profilassi antibiotica fino alla rimozione delle linee endovenose e dei tubi può essere utile per ridurre il rischio di SSI rispetto alla profilassi a dose singola.</td>
</tr>
<tr>
<td>• Il GDG ha evidenziato il rischio di favorire l’AMR se la somministrazione di antibiotici viene prolungata nel periodo postoperatorio, sia nel singolo paziente che a livello di struttura. Inoltre, questa pratica potrebbe influire negativamente sul microbioma del paziente e portare a complicanze gastrointestinali a breve e lungo termine. Un danno rilevante legato alla profilassi antibiotica prolungata è la diffusione intestinale del C. difficile con un rischio maggiore di manifestazione clinica di infezione.</td>
</tr>
</tbody>
</table>
Background

L’effetto preventivo dell’utilizzo routinario della profilassi antibiotica prima di una procedura chirurgica non pulita o di un impianto è riconosciuto da tempo. Tuttavia, il beneficio di proseguire la terapia dopo il completamento della procedura non è chiaro. Mentre le linee guida in vigore raccomandano una durata massima postoperatoria di 24 ore, sempre più evidenze dimostrano che può essere sufficiente una singola dose preoperatoria (e possibili dosi intraoperatorie supplementari in funzione della durata dell’operazione). Nonostante questo, i chirurghi hanno ancora la tendenza a prolungare la terapia fino a diversi giorni dopo l’intervento (15, 16).

L’uso e la durata della profilassi postoperatoria sono stati definiti da linee guida per la pratica clinica pubblicate da società professionali o autorità nazionali (Tabella 4.26.1). Diverse linee guida, come quelle pubblicate da SHEA / IDSA (17) e dalla Società Americana dei Farmacisti del Sistema Sanitario (1), suggeriscono di sospendere la profilassi antibiotica entro le 24 ore successive all’intervento chirurgico. Il bundle 2012 di prevenzione delle SSI dell’Istituto USA per il miglioramento della sanità (18) consiglia di sospendere la profilassi entro 24 ore in generale e entro 48 ore in cardiochirurgia. Altre linee guida pubblicate dalla UK-based NICE (19), dalla Scottish Intercollegiate Guidelines Network (SIGN) (20), dal Royal College of Physicians of Ireland (21) e dal Dipartimento di salute britannico (22), consigliano una singola dose preoperatoria e la non continuazione postoperatoria con o senza eccezioni per procedure chirurgiche specifiche.

| Tabella 4.24.1 - Raccomandazioni sulla SAP secondo le linee guida disponibili |
|---------------------------------|---------------------------------|
| Linee Guida (anno di pubblicazione) | Raccomandazioni sulla durata della SAP |
| SHEA/IDSA (2014) (17) | Interrompere la somministrazione entro le 24 post-intervento per tutti gli interventi |
| American Society of Health System Pharmacists (1) | Interrompere la profilassi antibiotica entro le 24 post-intervento |
| The Royal College of Physicians of Ireland (2012) (9) | Fatta eccezione per un numero limitato di interventi chirurgici (vedi sotto), la durata della profilassi antibiotica deve essere di una singola dose. Durata della profilassi che prevede più di una somministrazione ma comunque non oltre le 24 ore: riduzione aperta e fissaggio interno di fratture mandibolari composte, chirurgia ortognatica, settorinoplastiche complesse (compresi i trapianti), interventi al capo e al collo. Durata superiore alle 24 ore ma non alle 48: interventi a cuore aperto. |
| USA Institute of Health Improvement: surgical site infection (2012) (18) | Interrompere la profilassi entro le 24 ore, 48 nei pazienti cardio. |
| UK High impact intervention care bundle (2011) (22) | Antibiotici adeguati somministrati entro i 60 minuti precedenti l’incisione e ripetuti soltanto in caso di perdita copiosa di sangue, interventi chirurgici prolungati o dopo chirurgia protesica |

Dopo un'analisi approfondita delle fonti e della potenza delle prove presenti nelle linee guida vigenti, i membri del GDG hanno deciso di condurre una revisione sistematica per valutare le evidenze disponibili sull'efficacia della profilassi antibiotica prolungata nella prevenzione delle SSI.

Sintesi delle evidenze

Scopo della revisione delle evidenze (Appendice online 25) era indagare se la profilassi prolungata nel periodo post-operatorio sia più efficace nel ridurre il rischio di SSI rispetto alla profilassi peri-operatoria (singola dose prima dell'incisione e possibile dose/aggiuntiva/e intra-operatoria/e a seconda della durata dell'operazione). La popolazione target includeva pazienti di tutte le età sottoposti ad interventi chirurgici per i quali sia indicata la profilassi prolungata. L'outcome primario era il verificarsi di SSI e di mortalità SSI correlata.

Sono stati identificati 60 RCT (2-9, 11-14, 23-79), per complessivi 21.243 pazienti, che studiavano la durata ottimale della profilassi antibiotica in varie procedure chirurgiche: appendicectomia (23-27); chirurgia colorettale (28-30, 60-64, 75); chirurgia del tratto gastrointestinal superiore (31-34); colecistectomia (35, 65); chirurgia epatobiliare (76, 80); chirurgia generale mista (37-42, 79); chirurgia del tratto gastrointestinale superiore (31-34); ceseareo (43-45); chirurgia ginecologica (46, 47, 74); chirurgia ortopedica e dei traumi (48, 49); chirurgia della colonna vertebrale (50, 66); cardiochirurgia (2, 3, 7, 8, 77); chirurgia toracica (51); chirurgia vascolare (14); chirurgia dei trapianti (52); chirurgia della testa e del collo (53, 67-69, 78, 81); chirurgia otorinolaringoiatrica (55, 70); chirurgia maxillofacciale (56-59, 71); chirurgia ortognatica (4-6, 9, 11-13, 72); e altri interventi (73). In tutti gli studi considerati entrambi i gruppi di intervento e di controllo avevano ricevuto lo stesso regime pre-operatorio e differivano solo nella continuazione post-operatoria dell'antibiotico-profilassi. Erano invece presenti differenze nei regimi antibiotici e nella durata del prolungamento della profilassi. La prima dose di antibiotico era sempre stata somministrata prima degli interventi.

Considerando l'eterogeneità degli studi selezionati relativamente alla durata del prolungamento della profilassi post-operatoria e al tipo di procedura chirurgica, sono state eseguite diverse meta-analisi separate, secondo i seguenti confronti (Appendice on-line 25):

1. Qualsiasi regime prolungato contro nessuna dose post-operatoria (44 RCT).
2. Regime post-operatorio inferiore a 24 ore rispetto a singola dose post-operatoria (Un RCT).
4. Regime post-operatorio superiore a 48 ore rispetto a regime prolungato meno di 48 ore (3 RCT).
5. Tipologia di intervento con regime antibiotico prolungato:
 a. Cardiochirurgia
 b. Chirurgia vascolare
 c. Chirurgia ortognatica.

Nel complesso, vi sono evidenze di qualità moderata che la profilassi antibiotica prolungata nel post-operatorario non apporti alcun vantaggio nel ridurre il tasso di SSI rispetto alla somministrazione di una singola dose (OR: 0,89; 95% CI: 0,77-1,03).

In chirurgia cardiaca (2, 3) e ortognatica (4-6), ci sono alcune evidenze di bassa qualità che la profilassi antibiotica prolungata nel post-operatorario possa essere utile per ridurre le SSI se confrontata con la somministrazione unica (OR: 0,43; 95% CI: 0,25-0,76 e OR: 0,30; 95% CI: 0,10-0,88, rispettivamente). Al contrario, altri RCT (7-13) non hanno mostrato alcun beneficio nella prevenzione delle SSI prolongando la profilassi oltre le 24 ore, sia per la cardiochirurgia (7, 8) (OR: 0,74; 95% CI: 0,32-1,73; bassa qualità delle prove) che per la chirurgia ortognatica (9-13) (OR: 0,34; 95% CI: 0,08-1,44; qualità molto bassa delle prove). In chirurgia vascolare, c'era qualche prova proveniente da un RCT (14), che proseguire la profilassi antibiotica fino alla rimozione delle linee endovenose e dei tubi sia utile a ridurre il rischio di SSI rispetto ad una singola dose (OR: 0,50; 95% CI: 0,25-0,98).

Le evidenze raccolte riguardavano prevalentemente pazienti adulti. Solo 2 studi (27, 61) erano indirizzati in particolare verso la popolazione pediatrica. Quindici studi (4, 6, 11-13, 25, 26, 37, 39, 41, 42, 57, 70, 82, 83) includevano alcuni pazienti pediatrici, ma sempre con la maggioranza dei pazienti adulti. Tra i 69 anni studi inclusi, 14 (4, 6, 9, 11, 13, 26, 38, 43-45, 56, 57, 70, 77) sono stati condotti in LMIC. La ricerca bibliografica non ha identificato studi che riguardassero la mortalità SSI-correlata.
Ulteriori fattori considerati nella formulazione delle raccomandazioni

Valori e preferenze
Negli studi considerati, i valori e le preferenze del paziente non sono stati valutati. Il GDG ha supposto che la raccomandazione potesse avvicinarsi ai valori e alle preferenze della maggior parte dei pazienti. Il GDG ha sottolineato che alcuni pazienti si sentono rassicurati ricevendo una profilassi antibiotica prolungata, mentre altri preferiscono assumere il più basso numero di farmaci possibili e, in particolare, interrompere quanto prima gli antibiotici.

Utilizzo delle risorse
Studi relativi al rapporto costo-beneficio di un regime antibiotico più breve hanno rilevato un contenimento dei costi. Questo variava da US $ 36,90 a US $ 1664 ed è stato attribuito ad un numero inferiore di dosi antibiotiche somministrate, al trattamento ridotto degli effetti collaterali e alla durata più breve dei ricoveri (24, 47, 52, 55, 74, 84). Il GDG ha sottolineato che la raccomandazione può generare contenimenti dei costi legati ai farmaci e ai materiali, al tempo del personale e alla prevenzione di eventi avversi associati alla profilassi antibiotica prolungata. Il GDG ha sottolineato la necessità di sensibilizzare e formare le persone ad un utilizzo razionale degli antibiotici e alla gestione del trattamento, sia che si tratti di operatori sanitari (in particolare i chirurghi, con riferimento a questa raccomandazione) sia di pazienti.

Limiti della ricerca
Il GDG ha sottolineato la necessità di ulteriori RCT specifici per la cardiochirurgia, la chirurgia vascolare e la popolazione pediatrica. Importante ricordare che sarebbe fondamentale che gli studi includessero la scelta dell’antibiotico più indicato per la specifica procedura chirurgica. Gli studi futuri dovranno indagare sull’effetto della profilassi antibiotica prolungata sul microbioma.

Riferimenti

Linee Guida Globali per la prevenzione delle infezioni del sito chirurgico

4.25 Medicazioni avanzate

<table>
<thead>
<tr>
<th>Raccomandazione</th>
</tr>
</thead>
</table>
| Il panel suggerisce di non utilizzare alcun tipo di medicazione avanzata sopra una medicazione standard su ferite chirurgiche con chiusura primaria allo scopo di prevenire le SSI.
(Raccomandazione condizionale - qualità delle prove bassa) |

<table>
<thead>
<tr>
<th>Razionale della raccomandazione</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Le medicazioni avanzate utilizzate negli studi inclusi erano dei seguenti tipi: idrocolloidi; idrofibre; contenenti argento (metallico o ionico); e poliesametilene biguanide (PHMB). Le medicazioni standard erano assorbenti asciutte.</td>
</tr>
<tr>
<td>• Prove di bassa qualità da 10 RCT mostrano che le medicazioni avanzate applicate su ferite chirurgiche a chiusura primaria non riducono in modo significativo i tassi di SSI rispetto alle medicazioni standard. Il GDG ha unanimemente convenuto che le medicazioni avanzate non debbano essere utilizzate come misura preventiva per ridurre il rischio di SSI. Data la scarsa qualità delle evidenze, il GDG ha deciso che la forza della presente raccomandazione debba essere condizionale</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Osservazioni</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Il corpus di evidenze recuperate riguardava i pazienti adulti e non era disponibile alcuno studio in ambito pediatrico. Tuttavia, il GDG ha considerato questa raccomandazione valida anche per i pazienti pediatrici.</td>
</tr>
<tr>
<td>• Il GDG ha identificato possibili danni associati all’uso di medicazioni contenenti argento. In alcuni pazienti possono svilupparsi reazioni allergiche o irritazioni cutanee (1).</td>
</tr>
<tr>
<td>• Per quanto riguarda le medicazioni all’argento ionico, il GDG era preoccupato per la possibile esposizione dei pazienti e degli operatori sanitari alle nanoparticelle. È stato inoltre sottolineato che può svilupparsi resistenza microbica all’argento e al PHMB .</td>
</tr>
<tr>
<td>• Il GDG ha inoltre sottolineato che la disponibilità di medicazioni avanzate può essere limitata nei LMIC e che il loro acquisto potrebbe rappresentare un onere finanziario.</td>
</tr>
<tr>
<td>• Il GDG ha sottolineato che le medicazioni utilizzate sulle ferite chirurgiche a chiusura primaria devono essere sterili e devono essere applicate con tecnica asettica.</td>
</tr>
<tr>
<td>• Gli studi inclusi non hanno esaminato le medicazioni a pressione negativa. La NPWT è trattata nel capitolo 4.19 delle presenti linee guida.</td>
</tr>
</tbody>
</table>

Background
Il termine "ferita chirurgica" utilizzato in questo documento fa riferimento a una ferita creata quando viene eseguita un’incisione con bisturi o altro dispositivo da taglio affilato e poi chiusa in sala operatoria da sutura, graffette, nastro adesivo o colla, con conseguente riavicinamento dei lembi di pelle. È pratica comune coprire tali ferite con una medicazione. La medicazione funge da barriera fisica per proteggere la ferita dalla contaminazione dall’ambiente esterno fino a quando non diventa impermeabile ai microrganismi. La medicazione può anche servire ad assorbire l’essudato dalla ferita e mantenerla asciutta.

È disponibile un’ampia varietà di medicazioni per ferite (Allegato web 26). Le medicazioni avanzate sono principalmente idrocolloidi, idrogel, idrofibre, idrocolloidi a matrice poliuretanica e pellicole permeabili al vapore.

Una revisione Cochrane (2) e il suo aggiornamento (3) sugli effetti delle medicazioni per la prevenzione delle SSI non hanno trovato alcuna evidenza indicante che un tipo di medicazione fosse migliore di altre.

Nel 2008 la NICE, Regno Unito, ha pubblicato una linea guida clinica per la prevenzione e il trattamento delle SSI che raccomandava di coprire le incisioni chirurgiche con una medicazione interattiva appropriata al termine della procedura (4). L’aggiornamento dei dati del 2013 di queste linee guida suggerisce che nessun tipo particolare di medicazione emerge come il più efficace nel ridurre il rischio di SSI, anche se le medicazioni in nylon argentato possono risultare più efficaci della garza.
L’aggiornamento raccomanda ulteriori ricerche per confermare l’efficacia delle medicazioni moderne (5). I bundle di assistenza postoperatoria raccomandano di non toccare le medicazioni chirurgiche per un minimo di 48 ore dopo l’intervento, a meno che non si verifichino perdite. Tuttavia, al momento non esistono specifiche raccomandazioni o linee guida relative al tipo di medicazione chirurgica (6-8).

Dopo un’analisi approfondita delle fonti e della forza delle prove nelle linee guida vigenti e nelle revisioni, i membri del GDG hanno deciso di condurre una revisione sistematica per valutare l’efficacia delle medicazioni avanzate rispetto alle standard per la prevenzione delle SSI.

Sintesi delle evidenze

Lo scopo della revisione delle evidenze (Appendice on-line 26) era quello di valutare se l’uso delle medicazioni avanzate sia più efficace nel ridurre il rischio di SSI rispetto alle medicazioni standard. La popolazione target comprendeva pazienti di tutte le età sottoposti a procedura chirurgica. L’esito primario era il verificarsi di SSI e mortalità SSI-attribuibile.

Dieci RCT (1, 9-17), per un totale di 2.628 pazienti, valutavano le medicazioni avanzate confrontandole con quelle standard. I pazienti erano adulti sottoposti a sternotomia e interventi di chirurgia elettiva ortopedici, cardiaci, vascolari, plastici, addominali e colorettali da cancro. Negli interventi c’erano delle differenze poiché alcuni studi utilizzavano medicazioni a base di idrocolloidi, idroattive all’argento micronizzato o impregnate di poliesametilenbiguanide (PHMB). Inoltre, erano diverse le definizioni di SSI e la durata del follow-up postoperatorio.

Nonostante l’eterogeneità delle tipologie di medicazione avanzate utilizzate negli studi selezionati, sono state eseguite metanalisi separate per valutare (1) un confronto complessivo tra medicazioni avanzate versus quelle standard e (2) medicazioni idrocolloidi o impregnate d’argento, idroacidi o PHMB rispetto alle medicazioni standard.

Nel complesso, ci sono prove di bassa qualità che le medicazioni avanzate non riducano significativamente i tassi di SSI rispetto a quelle standard (OR: 0,80; 95% Cl: 0,52-1,23). In particolare, rispetto alle medicazioni standard, evidenze di qualità molto bassa non hanno mostrato né benefici né danni per le medicazioni idrocolloidi (OR: 1,08; 95% Cl: 0,51-2,28), per quelle impregnate d’argento (OR: 0,67; 95% Cl: 0,34-1,30) e per quelle idroattive (OR: 1,63; 95% Cl:0,57-4,66). Sono limitate anche le evidenze riguardanti le medicazioni contenenti PHMB (OR: 0,20; 95% Cl:0,02–1,76).

Il corpus delle evidenze recuperate riguardava soltanto pazienti adulti e non era disponibile alcuno studio sulla popolazione pediatrica. Inoltre, nessuno studio riportava i tassi di mortalità attribuibili a SSI.

Ulteriori fattori considerati nella formulazione delle raccomandazioni

Valori e preferenze

Ci sono molti fattori che possono contribuire alle preferenze di chirurghi e/o pazienti rispetto all’uso di particolari medicazioni. Anche se la metanalisi di 10 RCT non ha dimostrato differenze nella prevenzione delle SSI, altri risultati sono stati riportati da alcuni studi. Due RCT inclusi in questa analisi valutavano il comfort del paziente e segnalavano che le medicazioni idrocolloidi erano più confortevoli rispetto alle standard (16, 17). Un altro studio ha riportato migliori risultati estetici nei pazienti le cui incisioni chirurgiche erano medicate con idrocolloidio rispetto alle incisioni coperte da medicazioni standard, anche in assenza di eventi di SSI in entrambi i gruppi (13). È stato riconosciuto che i pazienti possono preferire un basso livello di frequenza del cambiamento della medicazione.

Utilizzo delle risorse

Il costo e la disponibilità delle medicazioni avanzate possono rappresentare una limitazione, in particolare nei Paesi a basso e medio reddito. Il costo aggiuntivo dell’uso di idrogel, idrocoloide o medicazioni contenenti argento sono stati valutati in diversi studi inclusi in questa revisione. Due studi hanno riportato una frequenza meno elevata nella sostituzione delle medicazioni con idrogel rispetto a quelle tradizionali (10, 16). Anche se i costi delle medicazioni con idrogel risultano da 2 a 5 volte superiori a quelli delle medicazioni standard, queste possono essere utili per i pazienti che non sono in grado di cambiarsi la medicazione o che necessitano di ritornare in ospedale per le medicazioni successive (16). Uno studio ha attribuito alle medicazioni standard un aumento del tempo di assistenza infermieristica, che è un aspetto degno di considerazione per gli ospedali con poco personale infermieristico. Un altro studio ha riportato maggiori costi per gli idrocolloidio rispetto alle medicazioni standard (17). Oltre al costo, può essere difficile in
aluni Paesi a basso o medio reddito acquisire e utilizzare correttamente medicazioni umide o metalliche. Tuttavia, uno studio ha riferito che le medicazioni idrocolloidi erano meno complicate da applicare (15).

Limiti della ricerca

È stato sottolineato che esistono pochissimi grandi studi di alta qualità che indagino i diversi tipi di medicazione ed abbiano la prevenzione delle SSI come outcome primario.

Gli studi clinici futuri devono concentrarsi sulla creazione di un campione di grandi dimensioni e comprendere la valutazione dello studio in cieco. Sono necessari studi ben progettati nei LMIC, così come nella popolazione pediatrica. Il GDG ha evidenziato un interesse particolare a studiare l’impiego di medicazioni con argento in ortopedia e evidenziato un interesse particolare a studiare come nella popolazione pediatrica. Il GDG ha sottolineato che esistono pochissimi grandi studi di alta qualità; inoltre sarebbe interessante confrontare le medicazioni opache visivo postoperatorio per decidere quanto a lungo mantenere in situ la medicazione primaria e, in ultima analisi, per la prevenzione delle SSI.

Riferimenti

4.26 Profilassi antibiotica in presenza di drenaggio e timing ottimale per la rimozione del drenaggio

Raccomandazioni

2. Il panel suggerisce che, in presenza di drenaggio, la profilassi antibiotica venga mantenuta per ridurre il rischio di SSI. (Raccomandazione condizionale, qualità delle prove bassa)

3. Il panel suggerisce di rimuovere il drenaggio quando clinicamente appropriato. Non si sono riscontrate evidenze riguardanti il momento ottimale in cui rimuovere il drenaggio al fine di prevenire le SSI. (Raccomandazione condizionale, qualità delle prove molto bassa)

Razionale delle raccomandazioni

- Nel complesso, evidenze di scarsa qualità (da 7 RCT) indicano che la profilassi antibiotica prolungata in presenza di un drenaggio della ferita non apporta né vantaggi né danno nella riduzione delle SSI rispetto alla sola profilassi perioperatoria (dose singola prima dell’incisione e possibile/i dose/i aggiuntiva/e intraoperatoria secondo la durata dell’intervento). Considerata la mancanza di evidenze che dimostrino che la profilassi antibiotica prolungata prevenga le SSI e gli eventuali danni correlati (vedi sotto), il GDG ha convenuto all’unanimità che la profilassi antibiotica non debba essere continuata in presenza di un drenaggio della ferita. Data la bassa qualità delle evidenze, la forza di questa raccomandazione è stata considerata condizionale.

- Prove di scarsa qualità (da 11 RCT) dimostrano che la rimozione precoce dei drenaggi delle ferite non apporta né beneficio né danno in quanto alla riduzione del tasso di SSI rispetto alla rimozione tardiva (giorno 6 o successivo). In particolare, nessun vantaggio è stato dimostrato quando si confronta la rimozione precoce (giorni da 1 a 5) con la rimozione in sesta giornata postoperatoria o oltre. I risultati sono stati simili anche quando si è confrontata la rimozione precoce con quella determinata in base al volume di drenaggio. Considerando la qualità molto scarsa delle evidenze e constatato che non identificano un punto temporale ottimale per la rimozione dei drenaggi per quanto riguarda la prevenzione della SSI, il GDG ha deciso di suggerire che il drenaggio della ferita deve essere rimesso quando indicato clinicamente. Data la scarsa qualità delle prove, la forza di questa raccomandazione è stata considerata condizionale.

Osservazioni

- Il corpus di evidenze recuperate si focalizzava su pazienti adulti e nessuno studio era disponibile per la popolazione pediatrica. Tuttavia, il GDG considera queste raccomandazioni valide anche per la popolazione pediatrica.

- Il GDG ha sottolineato che il corpus di evidenze non identifica un punto temporale ottimale per la rimozione del drenaggio della ferita per quanto riguarda la riduzione delle SSI. La definizione di rimozione precoce variava negli studi da 12 ore a 5 giorni postoperatori. La definizione di rimozione tardiva variava rispetto a quando il volume di drenaggio diventa minimo (cioè <30 o<50 mL / giorno) o a determinati momenti, come ad esempio i giorni postoperatori da 2 a 10.

- Il GDG ha sottolineato che le evidenze sul momento ottimale per la rimozione del drenaggio consistono in studi eseguiti su drenaggi di ferite chiuse. Pertanto, la relativa raccomandazione si riferisce all’utilizzo di sistemi di drenaggio di ferite chiuse.

- Le prove disponibili sul momento ottimale per la rimozione del drenaggio erano limitate a studi condotti su interventi chirurgici al seno e in ortopedia.

- È stato osservato che la stragrande maggioranza degli studi disponibili sui temi di queste raccomandazioni sono stati condotti in Paesi ad alto e medio reddito; solo uno studio riguarda un Paese a basso reddito.

- Il GDG ha individuato eventuali danni associati alla durata prolungata della somministrazione di antibiotici, come la selezione e l’emergenza di batteri resistenti, il rischio di superinfezioni micotiche e da Clostridium difficile e gli effetti collateralili degli antibiotici. Inoltre, la rimozione precoce del drenaggio della ferita può essere associata a possibili complicazioni postoperatorie, quali - ad esempio - l’aumento del verificarsi di sieromi ed ematomi che richiedono un trattamento (1).

- Il GDG ha evidenziato che i drenaggi sono dispositivi monouso e non devono essere riutilizzati.
Background

L’uso di tubi di drenaggio nelle ferite chirurgiche ha una lunga storia (2). Il posizionamento profilattico postoperatorio è stato ampiamente praticato fin da metà dell’Ottocento, secondo l’aforisma di Lawson Tait, chirurgo britannico del XIX secolo, "Nel dubbio, drena", ben noto a tutti i chirurghi tirocinanti. Tuttavia, alcuni studi hanno messo in discussione i vantaggi del drenaggio di routine (3,4). Si è addirittura sostenuto che i drenaggi potrebbero influenzare negativamente i risultati degli interventi, ad esempio interferendo sulla guarigione delle anastomosi e delle ferite addominali a causa di infezioni nell’area interessata (5,6). Finora sono state pubblicate trentaquattro revisioni sistematiche che indagano sull’effetto del drenaggio rispetto a nessun drenaggio della ferita in termini di rischio di infezione correlata nei pazienti chirurgici. Una meta-revisione che le riassume (Appendice on line 27) ha dimostrato che la maggior parte delle metanalisi ha mostrato una tendenza verso l’effetto positivo di non utilizzare il drenaggio della ferita rispetto a un rischio ridotto di infezione, ma non si sono ottenute differenze significative.

Lo scopo dei tubi di drenaggio è di rimuovere i fluidi o il sangue che si possano raccogliere nelle ferite e nelle cavità create dalla procedura chirurgica e che potrebbero causare complicanze. Quando utilizzato, il momento ottimale per la sua rimozione è ancora sconosciuto. I drenaggi sono di solito lasciati in posizione fino a quando la quantità di fluido che ne esce in un periodo di 24 ore è ridotta ad un certo volume (solitamente da meno di 30 ml a 100 ml). Tuttavia, alcuni chirurghi rimuovono i drenaggi dopo un lasso di tempo particolare dall’intervento chirurgico, che può variare da qualche ora a più di una settimana. Nella maggior parte dei casi, quando si inserisce un drenaggio, la profilassi antibiotica viene continuata nel postoperatorio, ma questa pratica non si basa su evidenze.

In presenza di drenaggi, la necessità di profilassi antibiotica perioperatoria e il regime ottimale richiedono ulteriori valutazioni e indagini a seguito del drammatico aumento dell’antibiotico-resistenza in tutto il mondo. Riconoscendo che l’AMR è oggi considerata un grave problema sanitario, l’OMS ha vivacemente sollecitato (7) l’attuazione di programmi globali e nazionali per ottimizzare l’uso degli agenti antibiotici negli esseri umani.

Non ci sono attualmente raccomandazioni formali per la profilassi antimicrobica in presenza di un drenaggio o per quanto riguarda la rimozione dello stesso dalla ferita per la prevenzione delle SSI. Dopo un’analisi approfondita delle risorse e vista la mancanza di raccomandazioni da altre linee guida, il GDG ha deciso di condurre una revisione sistematica della letteratura su questi temi.

Sintesi delle prove

Lo scopo della revisione delle evidenze (Appendice on-line 27) era valutare se la profilassi antibiotica prolungata in presenza di un drenaggio della ferita è più efficace nel ridurre il rischio di SSI rispetto alla sola profilassi perioperatoria (dose singola prima dell’Incisione e eventuali ulteriori dosi intraoperatorie secondo la durata dell’intervento). La revisione ha anche valutato se la rimozione precoce dei drenaggi delle ferite è più efficace della rimozione ritardata per prevenire le SSI. La popolazione target includeva pazienti di tutte le età sottoposti ad intervento chirurgico con posizionamento di drenaggio post-operatorio. L’esito primario era il verificarsi di SSI e mortalità SSI-attribuibile.

Sono stati identificati sette RCT (8-14) che riguardavano in totale 1670 pazienti e indagavano se gli antibiotici devono essere somministrati in singola dose preoperativamente e possibilmente ridossati secondo la durata dell’operazione, o se la loro somministrazione dovrebbe essere estesa al periodo postoperatorio.

Tre studi riportavano somministrazione prolungata fino alla rimozione del drenaggio (8, 9, 11). Nelle restanti 4 prove, i pazienti erano stati in terapia antibiotica endovenosa per 3 giorni (10, 14) o 5 giorni (13). I pazienti coinvolti negli studi avevano tutti sottoposto interventi di chirurgia generale (8-10, 14), trapianto di rene (11) e chirurgia del seno pilonidale (13). Una prova (12) studiava se la profilassi antibiotica riduceva il rischio di infezione.

Sintesi delle evidenze

In pazienti sottoposti a chirurgia toracica elettiva per toracostomia con tubo di drenaggio l’antibiotico è stato continuato per 48 ore dopo la procedura o fino a quando tutti i tubi toracostomici sono stati rimossi, a seconda di cosa sia avvenuto prima. Ci sono evidenze di scarsa qualità che la terapia antibiotica prolungata in presenza di un drenaggio della ferita non apporta né vantaggi né danno nella riduzione della SSI rispetto alla profilassi perioperatoria da sola (OR: 0,79; 95% CI: 0,53-1,20). Undici RCT (1, 15-24) per un totale di 1051 pazienti confrontavano la...
rimozione precoce vs. la tardiva del drenaggio. Nove studi studiavano la durata dei drenaggi nelle pazienti sottoposte a mastectomia (1, 15-22) e 2 studi dopo l’artroplastica dell’anca o del ginocchio (23, 24). Le definizioni di precoce negli studi variavano da 12/24 ore e 48 ore, da 3/4 a 5 giorni. La rimozione è stata definita posticipata sia quando era stata effettuata nel momento in cui il volume del drenaggio era diventato minimo (ossia, <30 ml/die o <50 ml/die), sia in un determinato momento post-operatorio, tipo il giorno 2, 6, 8, 10. Uno studio (24) confrontava tre diversi momenti di rimozione del drenaggio (12, 24 e 48 ore).

Nonostante l’eterogeneità, sono state condotte due analisi di sottogruppo basandosi sulle due principali classificazioni di rimozione tardiva del drenaggio, ossia al sesto giorno o oltre (3 studi (17,19,22) oppure in base al volume (6 studi (1,15,16,18,20,21). E’ stata considerata precoce la rimozione del drenaggio tra il primo e il quinto giorno. Pertanto, due studi che confrontavano la rimozione del drenaggio il primo giorno vs. il secondo (23) e nelle 12 ore post intervento vs. le 24 (24), non sono stati presi in considerazione per questi confronti di sottogruppo.

Per quanto riguarda i tassi di SSI, vi sono evidenze di qualità molto scarsa rispetto ai benefici o ai danni apportati dalla rimozione precoce dei drenaggi rispetto alla rimozione tardiva (OR: 0.86; 95% CI: 0.49–1.50). Quando questo confronto è stato sotto-classificato in rimozione tardiva in giornate specifiche (dal sesto giorno in poi) o per volume di drenaggio, i risultati sono rimasti invarianti (OR: 0.63; 95% CI: 0.07–5.70 e OR: 0.93; 95% CI: 0.51–1.70, rispettivamente).

Il corpus delle evidenze recuperate si focalizzava su pazienti adulti e non c’erano studi disponibili sulla popolazione pediatrica. La ricerca bibliografica non ha identificato studi che riportassero dati sulla mortalità SSI attribuibile.

Ulteriori fattori considerati nella formulazione delle raccomandazioni

Valori e preferenze

Il GDG era convinto che, in assenza di prove evidenti di benefici, la maggior parte dei pazienti non desiderasse ricevere una profilassi antibiotica prolungata per ridurre le SSI, tenuto anche conto dei danni potenziali, come lo sviluppo di antibiotico-resistenza, eventi avversi antibiotico-correlati e infezione da *C. difficile*.

Il GDG ha riconosciuto che i drenaggi delle ferite sono scomodi e fastidiosi per i pazienti. Un’indagine ha dimostrato che i pazienti preferiscono la loro rimozione precoce (15). Anche i pazienti che avevano sviluppato sieromi che richiedevano l’aspirazione indicavano la propria preferenza per una rimozione precoce, con un eventuale ritorno in ospedale per ulteriori aspirazioni, se necessario. In uno studio clinico sulla mastectomia, Barton e colleghi (1) riportano che la rimozione precoce del drenaggio aumenta la comparsa di sieroni che richiedono trattamento e questo studio è persino stato bloccato a causa dei tassi significativamente più elevati di eventi avversi nel gruppo rimozione precoce.

Utilizzo delle risorse

Il GDG ha fatto notare che la disponibilità di antibiotici può essere limitata, soprattutto nei LMIC. In realtà povere di risorse, i costi addizionali di una profilassi antibiotica prolungata in presenza di drenaggio, compresa l’acquisizione dei drenaggi stessi, può rappresentare un problema economico non solo per il sistema sanitario/ centro medico ma anche per i pazienti stessi. Il GDG ha sottolineato la necessità di aumentare la consapevolezza e la formazione sull’utilizzo razionale degli antibiotici e il governo degli stessi, sia tra gli operatori sanitari (in particolare i chirurghi per quanto riguarda questa raccomandazione), sia tra i pazienti. La rimozione precoce dei drenaggi può abbreviare la durata del ricovero e quindi rappresentare un risparmio (22).

Limiti della ricerca

I membri del GDG hanno rimarcato che le evidenze disponibili sul momento ottimale di rimozione dei drenaggi si limitano al campo della chirurgia toracica e ortopedica. Hanno fatto osservare che il numero di studi specifici è molto limitato e che sono quindi necessari trial clinici che si focalizzino su momenti temporali specifici per la rimozione dei drenaggi non sul volume drenato. Tutti gli studi futuri dovranno avere come outcome le SSI, definite secondo i criteri del CDC, e riportare tutti gli eventi avversi correlati al momento della rimozione del drenaggio. Servono inoltre studi ben progettati, soprattutto in ambito di chirurgia artroprotesica e in cardiochirurgia. Tutti gli studi considerati riguardavano pazienti adulti e sono quindi necessarie ulteriori ricerche per studiare i benefici della
rimozione precoce dei drenaggi nella popolazione pediatrica e tra i neonati. La stragrande maggioranza delle evidenze disponibili proviene da Paesi ad alto e medio reddito; servono più studi sui Paesi a basso reddito.

Riferimenti

5. DIFFUSIONE E IMPLEMENTAZIONE DELLE LINEE GUIDA

L'obiettivo generale di queste linee guida è di migliorare la qualità dell’assistenza e gli outcome dei pazienti che si sottopongono procedure chirurgiche attraverso la prevenzione delle SSI.

E’ essenziale che le linee guida vengono recepite da tutte le parti in gioco comprese nel target dei destinatari. In particolare, è un elemento chiave l’adozione delle raccomandazioni all’interno delle linee-guida e delle politiche nazionali e locali per la prevenzione e il controllo delle infezioni e la chirurgia sicura. La loro traduzione in pratica nei servizi di chirurgia e nelle sale operatorie è l’obiettivo ultimo e più importante per ottenere una riduzione dei danni dovuti alle SSI nel percorso chirurgico del paziente. La diffusione e l’implementazione di queste linee guida è un passo fondamentale che deve essere intrapreso dalla comunità internazionale, così come dai servizi sanitari nazionali e locali.

Implementazione delle linee-guida

Il team Prevenzione e Controllo delle Infezioni del Dipartimento Servizi e Sicurezza dell’OMS sta lavorando con degli esperti e un documento a parte, che accompagni queste linee guida, sarà dedicato alle strategie per la loro implementazione. Questo lavoro si basa su una revisione sistematica della letteratura, finalizzata ad identificare strategie e protocolli di successo per l'implementazione di misure preventive delle SSI, comprese quelle raccomandate dalle linee guida.

Il team sta anche considerando i risultati di alcuni progetti chiave che l’OMS ed altri partner hanno condotto nel campo della sicurezza chirurgica e della prevenzione delle SSI negli ultimi anni. I risultati e l’impatto della diffusione e adozione della checklist OMS per una chirurgia sicura saranno valutati e inseriti nel documento strategico. Inoltre, negli ultimi tre anni, il team OMS per la Prevenzione e il Controllo delle Infezioni ed il Johns Hopkins Armstrong Institute for Patient Safety and Quality (Baltimora, MD) hanno guidato l’implementazione del programma di sicurezza chirurgica negli ospedali nella regione africana dell’OMS e negli USA. Si è trattato di uno studio quasi sperimentale prima/dopo che implementava una serie di misure preventive contro le SSI, unitamente alla sorveglianza delle infezioni, combinata con un miglioramento della cultura della sicurezza del paziente. I risultati quantitativi hanno mostrato una significativa riduzione delle SSI ed il miglioramento del clima di sicurezza del paziente, mentre le valutazioni qualitative hanno fornito significative lezioni sui fattori ostacolanti e facilitanti l’implementazione. Come dimostrato dal Programma e da altri progetti, le linee guida vengono implementate con maggior successo quando inserite in un ambiente favorevole, che supporta la cultura della sicurezza del paziente. Dopo la consultazione con gli esperti, i risultati di tutti questi lavori verranno inseriti nel documento strategico. Inoltre, per il programma di sicurezza chirurgica è stato prodotto un bundle di oltre 20 strumenti per l’implementazione. Questo pacchetto è attualmente in fase di revisione e aggiornamento da parte dell’OMS e verrà pubblicato come bundle formale di implementazione in accompagnamento alle linee guida. Comprenderà strumenti per la prevenzione delle SSI così come per la creazione di una cultura della sicurezza del paziente.

Diffusione e valutazione delle linee-guida

Le raccomandazioni di queste linee guida saranno diffuse tramite un’ampia rete di partner tecnici internazionali e parti interessate nel campo della prevenzione e controllo delle infezioni, della chirurgia e della sicurezza del paziente, comprese le associazioni professionali e le organizzazioni di pazienti. Nello specifico, saranno coinvolte la Rete globale OMS per la prevenzione e il controllo delle infezioni e il forum dell’Iniziativa Globale per l’Emergenza e l’assistenza chirurgica di base. Altri gruppi OMS che lavorano su progetti di prevenzione e controllo delle infezioni, Paesi e uffici regionali dell’OMS, ministeri della sanità, Centri collaboranti.
OMS, altre agenzie delle Nazioni Unite e ONG saranno coinvolti attraverso specifiche comunicazioni e sarà fornito supporto e collaborazione per la diffusione e l'attuazione, se del caso. La diffusione avverrà anche attraverso tutte le strutture che partecipano alle campagne globali dell'OMS "Salva vite: lavati le mani" e "La chirurgia sicura salva le vite". Sono in fase di sviluppo piani per condurre l'implementazione pilota in alcuni Paesi, in particolare nella regione africana e nella regione delle Americhe. Tutte queste attività saranno supportati da specifici messaggi di comunicazione e, soprattutto, dal documento strategico per l'implementazione e dal pacchetto di strumenti che è previsto siano pubblicati poco dopo le linee-guida.

La divulgazione attraverso la letteratura scientifica è considerata cruciale per un'adozione di successo delle raccomandazioni, quindi l'OMS e i membri del Gruppo di esperti per le revisioni sistematiche hanno già presentato a riviste peer-reviewed alcuni documenti per la pubblicazione.

Il team OMS per la prevenzione e il controllo delle infezioni continuerà a lavorare con tutti gli stakeholder e le realtà che implementeranno le linee guida per identificare e valutare le priorità, gli ostacoli e gli elementi facilitanti l'implementazione. Il team supporterà anche tutti gli sforzi degli stakeholder per sviluppare adattamenti delle linee guida e strategie di implementazione su misura per il contesto locale. Le raccomandazioni contenute nelle presenti linee-guida devono essere tradotte in documenti localmente adeguati, in grado di rispondere ai bisogni specifici di ogni Paese e dei suoi servizi sanitari. Le modifiche alle raccomandazioni, laddove necessarie, devono limitarsi alle raccomandazioni condizionali e le giustificazioni di ogni modifica devono essere rese esplicite e trasparenti.

Per verificare e seguire l'implementazione di queste linee guida, il team OMS svilupperà insieme ai colleghi degli uffici regionali un quadro di riferimento. Questo lavoro si baserà anche sugli strumenti già disponibili del programma per la sicurezza chirurgica e di altri progetti.
6. ALLEGATI

6.1 Gruppo Sviluppo Linee-guida

Dr Hanan H Balkhy
Director, WHO Collaborating Centre and GCC Center for Infection Control
Executive Director, Infection Prevention and Control Department
King Saud Bin Abdulaziz University for Health Sciences
PO Box 22490
Riyadh 11426, Kingdom of Saudi Arabia
BalkhyH@ngha.med.sa

Professor Marja A Boermeester
Professor of Surgery
Department of Surgery (G4-132.1)
Academic Medical Center
University of Amsterdam
Meibergdreef 9
1105AZ Amsterdam, the Netherlands
m.a.boermeester@amc.uva.nl

Dr Nizam Damani
Clinical Microbiologist and Associate Medical Director IPC
Southern Health and Social Service Trust
68 Lurgan Road
Portadown, Craigavon, Co Armagh, UK
nizdamani@aol.com

Professor E. Patchen Dellinger
Professor of Surgery
University of Washington
Box 356410 Room BB 441
1959 N.E. Pacific Street
Seattle, WA 98195-6410, USA
patch@u.washington.edu

Dr Mazen Ferwana
Co-director, National & Gulf Centre for Evidence Based Health Practice
King Saud Bin Abdulaziz University for Health Sciences MNGHA
Riyadh, Kingdom of Saudi Arabia
ferwanam@ngha.med.sa

Professor Petra Gastmeier
Director, Institute of Hygiene and Environmental Medicine
Charité-University Medicine Berlin
Hindenburgdamm 27
12203 Berlin, Germany
petra.gastmeier@charite.de

Dr Xavier Guirao
Head, Unit of Endocrine & Head and Neck Surgery Unit of Surgical Infection Support Assistant Professor of Surgery
Parc Taulè Hospital Universitari, Sabadell Barcelona, Spain
xguirao@gmail.com

Professor Nordiah Awang Jalil
Consultant Clinical Microbiologist
Department of Medical Microbiology & Immunology and Head of Infection Control Unit, Universiti Kebangsaan Malaysia Medical Centre
Jalan Yaacob Latif, Bandar Tun Razak 56000 Cheras - Kuala Lumpur, Malaysia
nordiah@ppukm.ukm.edu.my

Ms Robinah Kaitiritimba
Patient Champion
Uganda National Health Consumers’ Organisation, Plot 744 Namuli Road, Bukoto, P.O Box 70095 - Kampala Uganda
rkitungi@yahoo.com
Ms Claire Kilpatrick
Imperial College London, CIPM & KS Healthcare Consulting
London, UK
clairekilpatrick.ck@googlemail.com

Professor Shaheen Mehtar
Tygerberg Hospital & Stellenbosch University
Tygerberg 7505
Cape Town, Republic of South Africa
smehtar@sun.ac.za

Ms Regina Namata Kamoga
Patient Champion
Community Health and Information Network (CHAIN)
Kampala, Uganda
namata.kamoga@gmail.com

Dr Babacar Ndoye
IPC specialist
Infection Control Africa Network
Dakar, Senegal
basendoye2@yahoo.fr

Dr Peter M Nthumba
Head of Plastic, Reconstructive and Hand Surgery Unit - Medical Education and Research Unit - AIC Kijabe Hospital
Kijabe, Kenya
nthumba@gmail.com

Dr Leonardo Pagani
Senior infectious disease specialist
Infectious Diseases Unit
Bolzano Central Hospital
Via L. Boehler, 5
39100 Bolzano, Italy
lpagani.id@gmail.com

Professor Didier Pittet
Director, Infection Control Programme and WHO Collaborating Centre on Patient Safety
University of Geneva Hospitals and Faculty of Medicine
4 Rue Gabrielle-Perret-Gentil
1211 Geneva 14, Switzerland
Didier.Pittet@hcuge.ch

Professor Jianan Ren
Director, Research Institute of General Surgery
Jinling Hospital
Medical School of Nanjing University
Nanjing, 210002, People’s Republic of China
jan@medmail.com.cn

Professor Joseph S Solomkin
Professor of Surgery (Emeritus)
University of Cincinnati College of Medicine
231 Albert B. Sabin Way
Cincinnati OH 45267-0558, USA
CEO, OASIS Global
6005 Given Road
Cincinnati, OH 45243, USA
solomkjs@ucmail.uc.edu

Ms Akeau Unahalekhaka
Faculty of Nursing
Chiang Mai University
A Muang
Chiang Mai, 50200 Thailand
akeau@hotmail.com

Professor Dr Andreas Widmer
Deputy Chief, Division of Infectious Diseases & Hospital Epidemiology and Infection Control
University of Basel Hospital and Clinics
4031 Basel, Switzerland
Andreas.Widmer@usb.ch

Professor Matthias Egger
Methodologist
Institute of Social and Preventive Medicine
University of Bern
Finkenhubelweg 11
3012 Bern, Switzerland
egger@ispm.unibe.ch
6.2 Gruppo direttivo OMS

Dr Benedetta Allegranzi
Coordinator
Infection Prevention and Control Global Unit
Department of Service Delivery and Safety
allegranzib@who.int

Dr Edward Kelley
Director
Department of Service Delivery and Safety
kelleye@who.int

Dr Walter Johnson
Department of Service Delivery and Safety
johnsonw@who.int

Dr Bassim Zayed
Department of Service Delivery and Safety
baszayed99@yahoo.com

Dr Sergey Eremin
Department of Pandemic and Epidemic Diseases
eremins@who.int

Dr Valeska Stempliuk
IPC focal point
Regional Office for the Americas
stempliv@paho.org

6.3 Gruppo Esperti Revisione Sistematica

Dr Benedetta Allegranzi
Infection Prevention and Control Global Unit
Service Delivery and Safety, HIS
WHO
20 Avenue Appia
1211 Geneva 27, Switzerland
allegranzib@who.int

Dr Jasper Atema
Department of Surgery (G4-142)
Academic Medical Center
University of Amsterdam
Meibergdreef 9
1105AZ Amsterdam, the Netherlands
j.j.atema@amc.nl

Dr Peter Bischoff
Institute of Hygiene and Environmental Medicine,
Charité-University Medicine Berlin
Hindenburgdamm 27
12203, Berlin, Germany
peter.bischoff@charite.de

Professor Marja A. Boermeester
Department of Surgery (G4-132.1)
Academic Medical Center
University of Amsterdam
Meibergdreef 9
1105AZ Amsterdam, the Netherlands
m.a.boermeester@amc.uva.nl

Ms Quirne Boldingh
Department of Surgery (G4-132.1)
Academic Medical Center
University of Amsterdam
Meibergdreef 9
1105AZ Amsterdam, the Netherlands
j.q.boldingh@amc.uva.nl

Dr Sarah Gans
University of Amsterdam
Meibergdreef 9
1105AZ Amsterdam, the Netherlands
s.l.gans@amc.uva.nl
6.4 Gruppo Esterno Revisione tra pari

Professor Emmanuel A. Ameh
Department of Surgery
Ahmadu Bello University & Ahmadu Bello University Teaching Hospital
Zaria, Nigeria
eaameh@yahoo.co.uk

Professor Valerie Robertson
Zimbabwe Infection Prevention and Control Project
Department of Medical Microbiology,
University of Zimbabwe
Harare, Zimbabwe
robertson@uz-ucsf.co.zw

Dr Fernando Otaiza
IPC Unit
Departamento de Calidad y Seguridad del Paciente, Subsecretaria de Redes Asistenciales
Ministerio de Salud
Santiago, Chile
fotaiza@minsal.cl

Professor Kamal Itani
General Surgery
VA Boston Healthcare System & Boston University
School of Medicine
Boston, USA
Kamal.Itani@va.gov

Dr Ilker Uçkay
Infectious Diseases and Orthopaedic Surgery,
University of Geneva Hospitals
4 Rue Gabrielle Perret-Gentil
1211 Geneva 14, Switzerland.
Ilker.Uckay@hcuge.ch